OFFSET
0,2
COMMENTS
This sequence was chosen to illustrate a method of solution.
In general, for the expansion of 1/((1-t)^2)*(1-s)(1-r)) with r>s>t we have the formula: a(n) = ( K*r^(n+3) + L*s^(n+3) + M*t^(n+3) + N*t^(n+3) )/D where K,L,M,N,D, have the following values:
K = (s-t)^2;
L = -(r-t)^2;
M = (r-s)*(r+s-2*t);
N = (r-t)*(s-t)*(r-s)*(n+3);
D = (r-s)*(r-t)^2*(s-t)^2.
Directly using formula we get a(n) = ( 4^(n+3) - 9*2^(n+3) + 8 + 6*(n+3) )/18. After transformation we obtain previous formula.
LINKS
Index entries for linear recurrences with constant coefficients, signature (8, -21, 22, -8).
FORMULA
G.f.: 1/((1-x)^2*(1-2*x)*(1-4*x)).
a(n) = ( 4^(n+3) - 9*2^(n+3) + 6*n + 26 )/18.
MATHEMATICA
nn = 25; CoefficientList[Series[1/((1 - x)^2*(1 - 2 x)*(1 - 4 x)), {x, 0, nn}], x] (* T. D. Noe, Sep 19 2013 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Yahia Kahloune, Sep 19 2013
STATUS
approved