login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A227209
Expansion of 1/((1-x)^2*(1-2x)*(1-4x)).
0
1, 8, 43, 198, 849, 3516, 14311, 57746, 231997, 930024, 3724179, 14904894, 59635945, 238576532, 954371647, 3817617642, 15270732693, 61083455040, 244334868715, 977341571990, 3909370482241, 15637490317548
OFFSET
0,2
COMMENTS
This sequence was chosen to illustrate a method of solution.
In general, for the expansion of 1/((1-t)^2)*(1-s)(1-r)) with r>s>t we have the formula: a(n) = ( K*r^(n+3) + L*s^(n+3) + M*t^(n+3) + N*t^(n+3) )/D where K,L,M,N,D, have the following values:
K = (s-t)^2;
L = -(r-t)^2;
M = (r-s)*(r+s-2*t);
N = (r-t)*(s-t)*(r-s)*(n+3);
D = (r-s)*(r-t)^2*(s-t)^2.
Directly using formula we get a(n) = ( 4^(n+3) - 9*2^(n+3) + 8 + 6*(n+3) )/18. After transformation we obtain previous formula.
FORMULA
G.f.: 1/((1-x)^2*(1-2*x)*(1-4*x)).
a(n) = ( 4^(n+3) - 9*2^(n+3) + 6*n + 26 )/18.
MATHEMATICA
nn = 25; CoefficientList[Series[1/((1 - x)^2*(1 - 2 x)*(1 - 4 x)), {x, 0, nn}], x] (* T. D. Noe, Sep 19 2013 *)
CROSSREFS
Cf. A229026.
Partial sums of A171477.
Sequence in context: A094865 A122880 A171479 * A282523 A099253 A239033
KEYWORD
nonn,easy
AUTHOR
Yahia Kahloune, Sep 19 2013
STATUS
approved

  NODES
COMMUNITY 1
INTERN 1