login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A237984
Number of partitions of n whose mean is a part.
90
1, 2, 2, 3, 2, 5, 2, 6, 5, 8, 2, 21, 2, 14, 22, 30, 2, 61, 2, 86, 67, 45, 2, 283, 66, 80, 197, 340, 2, 766, 2, 663, 543, 234, 703, 2532, 2, 388, 1395, 4029, 2, 4688, 2, 4476, 7032, 1005, 2, 17883, 2434, 9713, 7684, 14472, 2, 25348, 17562, 37829, 16786, 3721
OFFSET
1,2
COMMENTS
a(n) = 2 if and only if n is a prime.
FORMULA
a(n) = A000041(n) - A327472(n). - Gus Wiseman, Sep 14 2019
EXAMPLE
a(6) counts these partitions: 6, 33, 321, 222, 111111.
From Gus Wiseman, Sep 14 2019: (Start)
The a(1) = 1 through a(10) = 8 partitions (A = 10):
1 2 3 4 5 6 7 8 9 A
11 111 22 11111 33 1111111 44 333 55
1111 222 2222 432 22222
321 3221 531 32221
111111 4211 111111111 33211
11111111 42211
52111
1111111111
(End)
MATHEMATICA
Table[Count[IntegerPartitions[n], p_ /; MemberQ[p, Mean[p]]], {n, 40}]
PROG
(Python)
from sympy.utilities.iterables import partitions
def A237984(n): return sum(1 for s, p in partitions(n, size=True) if not n%s and n//s in p) # Chai Wah Wu, Sep 21 2023
CROSSREFS
Cf. A238478.
The Heinz numbers of these partitions are A327473.
A similar sequence for subsets is A065795.
Dominated by A067538.
The strict case is A240850.
Partitions without their mean are A327472.
Sequence in context: A164896 A298422 A304716 * A118136 A356552 A258567
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Feb 27 2014
STATUS
approved

  NODES
orte 1
see 1
Story 1