login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A252700
Number of strings of length n over a 7-letter alphabet that do not begin with a palindrome.
9
0, 7, 42, 252, 1722, 11802, 82362, 574812, 4021962, 28141932, 196981722, 1378789692, 9651445482, 67559543562, 472916230122, 3310409588892, 23172863100282, 162210013560042, 1135470066778362, 7948290270466812, 55638031696285962, 389466220495212042
OFFSET
0,2
COMMENTS
7 divides a(n) for all n.
lim n -> infinity a(n)/7^n ~ 0.697286015491013 is the probability that a random, infinite string over a 7-letter alphabet does not begin with a palindrome.
This sequence gives the number of walks on K_7 with loops that do not begin with a palindromic sequence.
FORMULA
a(n) = 7^n - A249640(n) for n > 0.
EXAMPLE
For n = 3, the first 10 of the a(3) = 252 solutions are (in lexicographic order) 011, 012, 013, 014, 015, 016, 021, 022, 023, 024.
MATHEMATICA
a252700[n_] := Block[{f}, f[0] = f[1] = 0;
f[x_] := 7*f[x - 1] + 7^Ceiling[(x)/2] - f[Ceiling[(x)/2]];
Prepend[Rest@Table[7^i - f[i], {i, 0, n}], 0]]; a252700[21] (* Michael De Vlieger, Dec 26 2014 *)
PROG
(Ruby) seq = [1, 0]; (2..N).each { |i| seq << 7 * seq[i-1] + 7**((i+1)/2) - seq[(i+1)/2] }; seq = seq.each_with_index.collect { |a, i| 7**i - a }
CROSSREFS
A249640 gives the number of strings of length n over a 7-letter alphabet that DO begin with a palindrome.
Analogous sequences for k-letter alphabets: A252696 (k=3), A252697 (k=4), A252698 (k=5), A252699 (k=6), A252701 (k=8), A252702 (k=9), A252703 (k=10).
Sequence in context: A170640 A170688 A003949 * A033133 A082035 A127016
KEYWORD
easy,nonn,walk
AUTHOR
Peter Kagey, Dec 20 2014
STATUS
approved

  NODES
orte 1
see 1
Story 1