login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A255672
Coefficient of x^n in Product_{k>=1} 1/(1-x^k)^(k*n).
13
1, 1, 7, 37, 215, 1251, 7459, 44885, 272727, 1668313, 10263057, 63423482, 393440867, 2448542136, 15280435191, 95588065737, 599213418327, 3763242239317, 23673166664695, 149138199543613, 940796936557265, 5941862248557566, 37568309060087582, 237767215209245583
OFFSET
0,3
COMMENTS
Number of partitions of n when parts i are of n*i kinds. - Alois P. Heinz, Nov 23 2018
From Peter Bala, Apr 18 2023: (Start)
The Gauss congruences a(n*p^k) == a(n*p^(k-1)) (mod p^k) hold for all primes p and all positive integers n and k.
Conjecture: the stronger supercongruences a(n*p^k) == a(n*p^(k-1)) (mod p^(2*k)) hold for all primes p >= 3 and all positive integers n and k. (End)
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..1000 (first 501 terms from Vaclav Kotesovec)
FORMULA
a(n) ~ c * d^n / sqrt(n), where d = 6.468409145117839606941857350154192468889057616577..., c = 0.25864792865819067933968646380369970564... . - Vaclav Kotesovec, Mar 01 2015
a(n) = [x^n] exp(n*Sum_{k>=1} x^k/(k*(1 - x^k)^2)). - Ilya Gutkovskiy, May 30 2018
MAPLE
b:= proc(n, k) option remember; `if`(n=0, 1, k*add(
b(n-j, k)*numtheory[sigma][2](j), j=1..n)/n)
end:
a:= n-> b(n$2):
seq(a(n), n=0..30); # Alois P. Heinz, Mar 11 2015
MATHEMATICA
Table[SeriesCoefficient[Product[1/(1-x^k)^(k*n), {k, 1, n}], {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Mar 01 2015 *)
CROSSREFS
Main diagonal of A255961.
Sequence in context: A362247 A126475 A274674 * A077239 A362087 A046235
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Mar 01 2015
STATUS
approved

  NODES
COMMUNITY 1
INTERN 1