login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Write 2^n in base 3, add up the "digits".
5

%I #30 May 03 2018 05:11:45

%S 1,2,2,4,4,4,4,6,4,8,8,10,10,8,10,16,12,14,12,16,14,18,16,12,10,12,14,

%T 20,20,22,24,26,24,22,22,22,18,20,26,28,28,28,26,30,30,30,26,26,26,32,

%U 38,40,38,38,28,34,40,42,38,40,46,40,38,42,48,44,42,40,42,48,48,44

%N Write 2^n in base 3, add up the "digits".

%C Comment from _Jean-Paul Allouche_, Oct 25 2015: As mentioned by Holdum et al. (2015) the following problem, cited in "Concrete Mathematics" by Graham, Knuth, and Patashnik (1994), is still open: prove that for all n > 256, binomial(2n,n) is either divisible by 4 or by 9 (cf. A000984). This can be easily reduced to show that, for all k >= 9, 2*a(k) - a(k+1) >= 4. This has been proved up to huge values of k (Holdum et al. mention k = 10^{13}).

%C For additional information about the divisibility of binomial(2n,n) by squares see the comments and references in A000984, - _N. J. A. Sloane_, Oct 29 2015

%H Giovanni Resta, <a href="/A261009/b261009.txt">Table of n, a(n) for n = 0..10000</a>

%H Cernenoks J., Iraids J., Opmanis M., Opmanis R., Podnieks K., <a href="http://arxiv.org/abs/1409.0446">Integer complexity: experimental and analytical results II</a>, arXiv:1409.0446 [math.NT] (September 2014)

%H Ronald L. Graham, Donald E. Knuth and Oren Patashnik, Concrete Math., 2n-d ed.; Addison-Wesley, 1994

%H Sebastian Tim Holdum, Frederik Ravn Klausen, Peter Michael Reichstein Rasmussen, <a href="http://www.integers-ejcnt.org/p43/p43.mail.html">Powers in prime bases and a problem on central coefficients</a>, Integers 15 (2015), #A43

%H K. Podnieks, <a href="http://arxiv.org/abs/1411.3911">Digits of pi: limits to the seeming randomness</a>, arXiv:1411.3911 [math.NT], 2014.

%F a(n) = A053735(A000079(n)). - _Michel Marcus_, Aug 14 2015

%e 2^7 = 128_10 = 11202_3, so a(7) = 1+1+2+0+2 = 6.

%p S:=n->add(i,i in convert(2^n,base,3)); [seq(S(n),n=0..100)];

%t Table[Total@ IntegerDigits[2^n, 3], {n, 0, 100}] (* _Giovanni Resta_, Aug 14 2015 *)

%o (PARI) a(n) = vecsum(digits(2^n, 3)); \\ _Michel Marcus_, Aug 14 2015

%o (Haskell)

%o a261009 = a053735 . a000079 -- _Reinhard Zumkeller_, Aug 14 2015

%Y Cf. A000079, A000984, A053735, A007089.

%Y Sum of digits of k^n in base b for various pairs (k,b): A001370 (2,10), A011754 (3,2), A261009 (2,3), A261010 (5,3).

%K nonn,base

%O 0,2

%A _N. J. A. Sloane_, Aug 14 2015

  NODES
orte 1
see 3