OFFSET
0,2
COMMENTS
Comment from Jean-Paul Allouche, Oct 25 2015: As mentioned by Holdum et al. (2015) the following problem, cited in "Concrete Mathematics" by Graham, Knuth, and Patashnik (1994), is still open: prove that for all n > 256, binomial(2n,n) is either divisible by 4 or by 9 (cf. A000984). This can be easily reduced to show that, for all k >= 9, 2*a(k) - a(k+1) >= 4. This has been proved up to huge values of k (Holdum et al. mention k = 10^{13}).
For additional information about the divisibility of binomial(2n,n) by squares see the comments and references in A000984, - N. J. A. Sloane, Oct 29 2015
LINKS
Giovanni Resta, Table of n, a(n) for n = 0..10000
Cernenoks J., Iraids J., Opmanis M., Opmanis R., Podnieks K., Integer complexity: experimental and analytical results II, arXiv:1409.0446 [math.NT] (September 2014)
Ronald L. Graham, Donald E. Knuth and Oren Patashnik, Concrete Math., 2n-d ed.; Addison-Wesley, 1994
Sebastian Tim Holdum, Frederik Ravn Klausen, Peter Michael Reichstein Rasmussen, Powers in prime bases and a problem on central coefficients, Integers 15 (2015), #A43
K. Podnieks, Digits of pi: limits to the seeming randomness, arXiv:1411.3911 [math.NT], 2014.
FORMULA
EXAMPLE
2^7 = 128_10 = 11202_3, so a(7) = 1+1+2+0+2 = 6.
MAPLE
S:=n->add(i, i in convert(2^n, base, 3)); [seq(S(n), n=0..100)];
MATHEMATICA
Table[Total@ IntegerDigits[2^n, 3], {n, 0, 100}] (* Giovanni Resta, Aug 14 2015 *)
PROG
(PARI) a(n) = vecsum(digits(2^n, 3)); \\ Michel Marcus, Aug 14 2015
(Haskell)
a261009 = a053735 . a000079 -- Reinhard Zumkeller, Aug 14 2015
CROSSREFS
KEYWORD
nonn,base
AUTHOR
N. J. A. Sloane, Aug 14 2015
STATUS
approved