login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A261010
Write 5^n in base 3, add up the "digits".
2
1, 3, 5, 7, 7, 9, 9, 13, 15, 13, 13, 17, 19, 21, 21, 27, 25, 25, 25, 23, 27, 33, 31, 39, 35, 45, 37, 57, 45, 47, 45, 45, 53, 47, 55, 51, 57, 59, 67, 67, 69, 65, 67, 65, 71, 79, 71, 65, 67, 75, 65, 71, 73, 83, 69, 79, 81, 85, 79, 89, 87, 95, 89, 85, 97, 99, 93, 101, 107
OFFSET
0,2
LINKS
Cernenoks J., Iraids J., Opmanis M., Opmanis R., Podnieks K., Integer complexity: experimental and analytical results II, arXiv:1409.0446 [math.NT] (September 2014)
K. Podnieks, Digits of pi: limits to the seeming randomness, arXiv:1411.3911 [math.NT], 2014.
MAPLE
S:=n->add(i, i in convert(5^n, base, 3)); [seq(S(n), n=0..100)];
PROG
(Python)
def digits(n, b=10): # digits of n in base 2 <= b <= 62
x, y = n, ''
while x >= b:
x, r = divmod(x, b)
y += str(r) if r < 10 else (chr(r+87) if r < 36 else chr(r+29))
y += str(x) if x < 10 else (chr(x+87) if x < 36 else chr(x+29))
return y[::-1]
def A261010(n):
return sum([int(d) for d in digits(5**n, 3)]) # Chai Wah Wu, Aug 14 2015
CROSSREFS
Sum of digits of k^n in base b for various pairs (k,b): A001370 (2,10), A011754 (3,2), A261009 (2,3), A261010 (5,3).
Sequence in context: A316852 A357274 A307120 * A064002 A195868 A228543
KEYWORD
nonn,base
AUTHOR
N. J. A. Sloane, Aug 14 2015
STATUS
approved

  NODES
orte 1
see 2
Story 1