login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A272822
G.f. satisfies: A(x) = 1 + 2*x*AGM(A(x)^2, A(-x)^2).
1
1, 2, 0, 0, 0, -8, 0, 0, 0, 88, 0, 0, 0, -1248, 0, 0, 0, 20056, 0, 0, 0, -347360, 0, 0, 0, 6323744, 0, 0, 0, -119299200, 0, 0, 0, 2311546200, 0, 0, 0, -45729024480, 0, 0, 0, 919817083680, 0, 0, 0, -18755086062720, 0, 0, 0, 386776930629408, 0, 0, 0, -8053207409464448, 0, 0, 0, 169063213304845696, 0, 0, 0, -3574582279957007872, 0, 0, 0, 76052003974889011032, 0, 0, 0, -1626996714019973193696, 0, 0, 0, 34977427889190951942176, 0, 0, 0, -755249894672423411380352, 0, 0, 0
OFFSET
0,2
COMMENTS
Here AGM(x,y) = AGM((x+y)/2, sqrt(x*y)) denotes the arithmetic-geometric mean.
FORMULA
G.f. A(x) satisfies:
(1) A(x)*A(-x) = 2 - (A(x)^2 + A(-x)^2)/2.
(2) A(x) = 1 + 2*x*AGM(A(x)*A(-x), (A(x)^2 + A(-x)^2)/2).
(3) A(x) = 1 + 2*x*AGM(A(x)*A(-x), 2 - A(x)*A(-x)).
(4) A(x) = 1 + 2*x*AGM(1, sqrt( A(x)*A(-x) * (A(x)^2 + A(-x)^2)/2 ) ).
EXAMPLE
G.f.: A(x) = 1 + 2*x - 8*x^5 + 88*x^9 - 1248*x^13 + 20056*x^17 - 347360*x^21 + 6323744*x^25 - 119299200*x^29 + 2311546200*x^33 - 45729024480*x^37 +...
where A(x) = 1 + 2*x*AGM(A(x)^2, A(-x)^2).
RELATED SERIES.
A(x)^2 = 1 + 4*x + 4*x^2 - 16*x^5 - 32*x^6 + 176*x^9 + 416*x^10 - 2496*x^13 - 6400*x^14 + 40112*x^17 + 107936*x^18 - 694720*x^21 - 1929984*x^22 +...
A(x)*A(-x) = 1 - 4*x^2 + 32*x^6 - 416*x^10 + 6400*x^14 - 107936*x^18 + 1929984*x^22 - 35940096*x^26 + 689571840*x^30 - 13537204640*x^34 +...
(A(x)^2 + A(-x)^2)/2 = 1 + 4*x^2 - 32*x^6 + 416*x^10 - 6400*x^14 + 107936*x^18 - 1929984*x^22 + 35940096*x^26 - 689571840*x^30 + 13537204640*x^34 +...
where A(x)*A(-x) = 2 - (A(x)^2 + A(-x)^2)/2.
PROG
(PARI) /* From definition: A(x) = 1 + 2*x*AGM(A(x)^2, A(-x)^2) */
{a(n)=local(A=1+4*x + x*O(x^n)); for(i=1, n, A = 1 + 2*x*agm(A^2, subst(A, x, -x)^2)); polcoeff(A, n)}
for(n=0, 60, print1(a(n), ", "))
(PARI) /* From A(x) = 1 + 2*x*AGM(A(x)*A(-x), (A(x)^2 + A(-x)^2)/2) */
{a(n)=local(A=1+4*x + x*O(x^n)); for(i=1, n, A = 1 + 2*x*agm(A*subst(A, x, -x), (A^2 + subst(A, x, -x)^2)/2)); polcoeff(A, n)}
for(n=0, 60, print1(a(n), ", "))
CROSSREFS
Sequence in context: A158801 A266208 A266158 * A265663 A107491 A169775
KEYWORD
sign
AUTHOR
Paul D. Hanna, May 07 2016
STATUS
approved

  NODES
Community 1
Intern 1
Note 1
os 2
text 2
web 1