login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A273952
E.g.f. A(x) satisfies: A( sqrt( A(x^2*exp(-x)) ) ) = x, where A(x) = Sum_{n>=1} a(n)*x^n/(2^(n-1)*(n-1)!).
1
1, 1, 1, 4, 77, 736, 2077, 22912, 1197625, 23597056, 350173241, 7161708544, 236337969925, 6751323455488, 122041278706453, 3799979465506816, 298712815532930033, 10872130692620222464, -18153139467375673487, -513247768690867306496, 1172597577739561586096701, 53608628175847428085252096, -748272864671493582192607219, -39715579516869644288006291456, 7586072261976188853665242247977
OFFSET
1,4
FORMULA
E.g.f. A(x) = Sum_{n>=1} a(n) * x^n / (2^(n-1)*(n-1)!) satisfies:
(1) A( sqrt( A(x^2*exp(x)) ) ) = -2*LambertW(-x/2*exp(x/2)).
(2) A(x) = Series_Reversion( sqrt( A(x^2*exp(-x)) ) ).
EXAMPLE
E.g.f. A(x) = x + x^2/2 + x^3/(2^2*2!) + 4*x^4/(2^3*3!) + 77*x^5/(2^4*4!) + 736*x^6/(2^5*5!) + 2077*x^7/(2^6*6!) + 22912*x^8/(2^7*7!) + 1197625*x^9/(2^8*8!) + 23597056*x^10/(2^9*9!) + 350173241*x^11/(2^10*10!) + 7161708544*x^12/(2^11*11!) + 236337969925*x^13/(2^12*12!) + 6751323455488*x^14/(2^13*13!) + 122041278706453*x^15/(2^14*14!) +...
such that: A( sqrt( A(x^2*exp(-x)) ) ) = x.
Written with reduced fraction coefficients,
A(x) = x + 1/2*x^2 + 1/8*x^3 + 1/12*x^4 + 77/384*x^5 + 23/120*x^6 + 2077/46080*x^7 + 179/5040*x^8 + 239525/2064384*x^9 + 823/6480*x^10 + 350173241/3715891200*x^11 + 109279/1247400*x^12 + 9453518797/78479622144*x^13 + 206034041/1556755200*x^14 + 122041278706453/1428329123020800*x^15 +...
Also, A( sqrt( A(x^2*exp(x)) ) ) = -2*LambertW(-x/2*exp(x/2)) where
A( sqrt( A(x^2*exp(x)) ) ) = x + 2*x^2/2! + 6*x^3/3! + 28*x^4/4! + 180*x^5/5! + 1476*x^6/6! +...+ A100526(n)*x^n/n! +...
PROG
(PARI) {a(n) = my(A=x); for(i=1, n, A = serreverse( sqrt( subst(A, x, x^2*exp(-x +x*O(x^n))) ) ) ); (n-1)!*2^(n-1) * polcoeff(A, n)}
for(n=1, 30, print1(a(n), ", "))
CROSSREFS
Cf. A100526.
Sequence in context: A184272 A080989 A006267 * A370953 A201984 A210519
KEYWORD
sign
AUTHOR
Paul D. Hanna, Jun 16 2016
STATUS
approved

  NODES
orte 1
see 1
Story 1