login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A276592
Numerator of the rational part of the sum of reciprocals of even powers of odd numbers, i.e., Sum_{k>=1} 1/(2*k-1)^(2*n).
6
1, 1, 1, 17, 31, 691, 5461, 929569, 3202291, 221930581, 4722116521, 56963745931, 14717667114151, 2093660879252671, 86125672563201181, 129848163681107301953, 868320396104950823611, 209390615747646519456961, 14129659550745551130667441, 16103843159579478297227731
OFFSET
1,4
COMMENTS
Apart from signs, same as A089171 and A279370. - Peter Bala, Feb 07 2019
LINKS
Siddharth Dwivedi, Vivek Kumar Singh, and Abhishek Roy, Semiclassical limit of topological Rényi entropy in 3d Chern-Simons theory, arXiv:2007.07033 [hep-th], 2020. See also J. of High Energy Physics (2020) Vol. 2020, Issue 12, Article 132.
FORMULA
a(n)/A276593(n) + A276594(n)/A276595(n) = A046988(n)/A002432(n).
a(n)/A276593(n) = (-1)^(n+1) * B_{2*n} * (2^(2*n) - 1) / (2 * (2*n)!), where B_n is the Bernoulli number. - Seiichi Manyama, Sep 03 2018
MAPLE
seq(numer(sum(1/(2*k-1)^(2*n), k=1..infinity)/Pi^(2*n)), n=1..22);
MATHEMATICA
a[n_]:=Numerator[Pi^(-2 n) (1-2^(-2 n)) Zeta[2 n]] (* Steven Foster Clark, Mar 10 2023 *)
a[n_]:=Numerator[(-1)^n SeriesCoefficient[1/(E^x+1), {x, 0, 2 n-1}]] (* Steven Foster Clark, Mar 10 2023 *)
a[n_]:=Numerator[(-1)^n Residue[Zeta[s] Gamma[s] (1-2^(1-s)), {s, 1-2 n}]] (* Steven Foster Clark, Mar 11 2023 *)
KEYWORD
nonn,frac
AUTHOR
Martin Renner, Sep 07 2016
STATUS
approved

  NODES
COMMUNITY 1
INTERN 1