login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A289273
Complement of A242410.
1
4, 25, 26, 27, 28, 30, 32, 35, 36, 39, 40, 55, 56, 65, 66, 69, 70, 72, 74, 75, 76, 78, 80, 95, 96, 105, 106, 108, 110, 114, 116, 121, 122, 123, 124, 126, 128, 132, 134, 135, 136, 140, 141, 143, 144, 145, 146, 147, 148, 153, 154, 155, 156, 161, 162, 165, 166
OFFSET
1,1
COMMENTS
Conjecture: there will never be a point where this sequence has more terms than A242410. (80 is only the 21st term of this sequence.)
LINKS
MAPLE
A242410:= proc(n) option remember; local Q, k;
Q:= map(procname, numtheory:-divisors(n) minus {1, n});
for k from procname(n-1) + 1 do
if andmap(t -> (k mod t > 0), Q) then return k fi
od
end proc:
A242410(1):= 1:
sort(convert({$1..A242410(1000)} minus map(A242410, {$1..1000}), list)); # Robert Israel, Jul 05 2017
MATHEMATICA
a = {1}; Do[k = a[[n - 1]] + 1; While[AnyTrue[Most@ Rest@ Divisors@ n, Divisible[k, a[[#]] ] &], k++]; AppendTo[a, k], {n, 2, 110}]; Complement[Range@ Max@ a, a] (* Michael De Vlieger, Jul 05 2017 *)
PROG
(PARI) okd(k, vd) = {for (i=1, #vd, if ((k % vd[i]) == 0, return (0)); ); return (1); }
fnext(n, va) = {d = divisors(n); vd = vector(#d-2, i, va[d[i+1]]); k = va[n-1]+1; while (! okd(k, vd), k++); k; }
lista(nn) = {va = vector(nn); va[1] = 1; for (n=2, nn, va[n] = fnext(n, va); ); va; }
CROSSREFS
Cf. A242410.
Sequence in context: A302624 A238515 A043067 * A309056 A095970 A297963
KEYWORD
nonn
AUTHOR
J. Lowell, Jun 30 2017
STATUS
approved

  NODES
orte 1
see 1
Story 1