login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A294225
Practical numbers q with q + 2 and q^2 + 2 both practical.
2
2, 4, 520, 2560, 3100, 4648, 6448, 6784, 7252, 11128, 12400, 15496, 19264, 26128, 26752, 26860, 28768, 31648, 32368, 36160, 37408, 41728, 45400, 48760, 53248, 53584, 54832, 57148, 58828, 63544, 66820, 68440, 68500, 73948, 74176, 80512, 81508, 84208, 93184, 94300, 106780, 112288, 113968, 118528, 131068
OFFSET
1,1
COMMENTS
Conjecture: The sequence has infinitely many terms.
In 1996 G. Melfi proved that there are infinitely many positive integers q with q and q + 2 both practical.
As any practical number greater than 2 is a multiple of 4 or 6, when q > 2, q + 2 and q^2 + 2 are all practical, we must have q^2 + 2 == 0 (mod 6), hence q is not divisible by 3 and thus 4 | q and 6 | (q + 2), therefore q == 4 (mod 12).
LINKS
G. Melfi, On two conjectures about practical numbers, J. Number Theory 56 (1996) 205-210.
Zhi-Wei Sun, Conjectures on representations involving primes, in: M. B. Nathanson (ed.), Combinatorial and Additive Number Theory II: CANT, New York, NY, USA, 2015 and 2016, Springer Proc. in Math. & Stat., Vol. 220, Springer, New York, 2017.
EXAMPLE
a(1) = 2 since 2, 2 + 2 = 4 and 2^2 + 2 = 6 are all practical.
a(2) = 4 since 4, 4 + 2 = 6 and 4^2 + 2 = 18 are all practical.
MATHEMATICA
f[n_]:=f[n]=FactorInteger[n];
Pow[n_, i_]:=Pow[n, i]=Part[Part[f[n], i], 1]^(Part[Part[f[n], i], 2]);
Con[n_]:=Con[n]=Sum[If[Part[Part[f[n], s+1], 1]<=DivisorSigma[1, Product[Pow[n, i], {i, 1, s}]]+1, 0, 1], {s, 1, Length[f[n]]-1}];
pr[n_]:=pr[n]=n>0&&(n<3||Mod[n, 2]+Con[n]==0);
pq[n_]:=pq[n]=pr[n]&&pr[n+2]&&pr[n^2+2];
tab={}; Do[If[pq[k], tab=Append[tab, k]], {k, 1, 132000}]; Print[tab]
CROSSREFS
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Oct 25 2017
STATUS
approved

  NODES
orte 1
see 1
Story 1