login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A299412
Pentagonal pyramidal numbers divisible by 3.
2
0, 6, 18, 75, 126, 288, 405, 726, 936, 1470, 1800, 2601, 3078, 4200, 4851, 6348, 7200, 9126, 10206, 12615, 13950, 16896, 18513, 22050, 23976, 28158, 30420, 35301, 37926, 43560, 46575, 53016, 56448, 63750, 67626, 75843, 80190, 89376, 94221, 104430, 109800, 121086, 127008, 139425, 145926, 159528, 166635
OFFSET
0,2
FORMULA
a(n) = A007494(n)*A117748(n).
a(n) = (3*n/2)^2*(3*n/2+1)/2 if n even.
a(n) = ((3*n+1)/2)^2*((3*n+1)/2+1)/2 if n odd.
From Omar E. Pol, Feb 21 2018: (Start)
a(n) = 3*A001318(n)*A007494(n).
a(n) = A001318(n)*abs(A269416(n-1)), n >= 1. (End)
G.f.: 3*x*(3*x^4 + 5*x^3 + 13*x^2 + 4*x + 2)/((x-1)^4*(x+1)^3). - Robert Israel, Feb 28 2018
EXAMPLE
The first 6 pentagonal pyramidal numbers are 0, 1, 6, 18, 40, 75; of these, 0, 6, 18, 75 are divisible by 3.
MAPLE
f:= proc(n) if n::even then (3*n/2)^2*(3*n/2+1)/2 else
((3*n+1)/2)^2*((3*n+1)/2+1)/2 fi end proc:
map(f, [$0..100]); # Robert Israel, Feb 28 2018
MATHEMATICA
Array[((3 #1 + #2)/2)^2*((3 #1 + #2)/2 + 1)/2 & @@ {#, Boole@ OddQ@ #} &, 47, 0] (* Michael De Vlieger, Feb 21 2018 *)
LinearRecurrence[{1, 3, -3, -3, 3, 1, -1}, {0, 6, 18, 75, 126, 288, 405}, 50] (* Harvey P. Dale, Jul 16 2021 *)
PROG
(PARI) lista(nn) = {for (n=0, nn, if (!(n^2*(n+1)/2 % 3), print1(n^2*(n+1)/2, ", ")); ); } \\ Michel Marcus, Feb 21 2018
(PARI) x='x+O('x^99); concat(0, Vec(3*x*(3*x^4+5*x^3+13*x^2+4*x+2)/((x-1)^4*(x+1)^3))) \\ Altug Alkan, Mar 14 2018
(Magma) [IsEven(n) select (3*n/2)^2*(3*n/2+1)/2 else ((3*n+1)/2)^2*((3*n+1)/2+1)/2: n in [0..50] ]; // Vincenzo Librandi, Mar 14 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Justin Gaetano, Feb 20 2018
STATUS
approved

  NODES
COMMUNITY 1
INTERN 1