login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A302329
a(0)=1, a(1)=61; for n>1, a(n) = 62*a(n-1) - a(n-2).
9
1, 61, 3781, 234361, 14526601, 900414901, 55811197261, 3459393815281, 214426605350161, 13290990137894701, 823826961944121301, 51063980650397625961, 3165142973362708688281, 196187800367837541047461, 12160478479832564836254301, 753753477949251182306719201
OFFSET
0,2
COMMENTS
Centered hexagonal numbers (A003215) with index in A145607. Example: 35 is a member of A145607, therefore A003215(35) = 3781 is a term of this sequence.
Also, centered 10-gonal numbers (A062786) with index in A182432. Example: 28 is a member of A182432 and A062786(28) = 3781.
LINKS
Christian Aebi and Grant Cairns, Less than Equable Triangles on the Eisenstein lattice, arXiv:2312.10866 [math.CO], 2023.
Tanya Khovanova, Recursive Sequences
FORMULA
G.f.: (1 - x)/(1 - 62*x + x^2).
a(n) = a(-1-n).
a(n) = cosh((2*n + 1)*arccosh(4))/4.
a(n) = ((4 + sqrt(15))^(2*n + 1) + 1/(4 + sqrt(15))^(2*n + 1))/8.
a(n) = (1/4)*T(2*n+1, 4), where T(n,x) denotes the n-th Chebyshev polynomial of the first kind. - Peter Bala, Jul 08 2022
MATHEMATICA
LinearRecurrence[{62, -1}, {1, 61}, 20]
PROG
(PARI) x='x+O('x^99); Vec((1-x)/(1-62*x+x^2)) \\ Altug Alkan, Apr 06 2018
CROSSREFS
Fourth row of the array A188646.
First bisection of A041449, A042859.
Similar sequences of the type cosh((2*n+1)*arccosh(k))/k: A000012 (k=1), A001570 (k=2), A077420 (k=3), this sequence (k=4), A302330 (k=5), A302331 (k=6), A302332 (k=7), A253880 (k=8).
Sequence in context: A209087 A207052 A207129 * A218286 A126434 A096544
KEYWORD
nonn,easy
AUTHOR
Bruno Berselli, Apr 05 2018
STATUS
approved

  NODES
orte 1
see 1
Story 1