login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A304175
Number of leaf-balanced rooted plane trees with n nodes.
6
1, 1, 2, 5, 12, 27, 59, 128, 277, 597, 1280, 2730, 5794, 12248, 25836, 54508, 115222, 244144, 518104, 1099499, 2330326, 4930089, 10415135, 21992400, 46470911, 98353146, 208580686, 443186181, 942988423, 2007981801, 4276830431, 9109431322, 19404918449, 41357252072, 88236092543
OFFSET
1,3
COMMENTS
A rooted plane tree is leaf-balanced if every branch of the root has the same number of leaves, and every branch of the root is itself leaf-balanced.
LINKS
EXAMPLE
The a(5) = 12 leaf-balanced plane trees:
((((o)))), (((oo))), (((o)o)), ((o(o))), ((ooo)),
(((o))o), (o((o))), ((o)(o)),
((o)oo), (o(o)o), (oo(o)),
(oooo).
Missing from this list are ((oo)o) and (o(oo)).
MATHEMATICA
lbplane[n_]:=If[n==1, {{}}, Join@@Table[Select[Tuples[lbplane/@c], SameQ@@(Count[#, {}, {0, Infinity}]&/@#)&], {c, Join@@Permutations/@IntegerPartitions[n-1]}]];
Table[Length[lbplane[n]], {n, 10}]
PROG
(PARI) seq(n)={my(v=vector(n)); v[1]=x/(1-x) + O(x*x^n); for(k=2, n, v[k]=x*sumdiv(k, d, if(d<k, v[d]^(k/d)))/(1-x) ); Vec(vecsum(v) + O(x*x^n))} \\ Andrew Howroyd, Dec 13 2020
KEYWORD
nonn
AUTHOR
Gus Wiseman, Aug 16 2018
EXTENSIONS
Terms a(17) and beyond from Andrew Howroyd, Dec 13 2020
STATUS
approved

  NODES
orte 1
see 1
Story 1