login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A309450
The successive approximations up to 7^n for 7-adic integer 2^(1/5).
11
0, 4, 46, 95, 1124, 15530, 82758, 435705, 4553420, 27612624, 269734266, 1682110511, 9591417483, 9591417483, 9591417483, 4078929854577, 23069175894349, 122767967603152, 1053290023551980, 9195358013104225, 77588729125343083, 237173261720567085, 1354264989887135099
OFFSET
0,2
LINKS
FORMULA
a(0) = 0 and a(1) = 4, a(n) = a(n-1) + (a(n-1)^5 - 2) mod 7^n for n > 1.
EXAMPLE
a(1) = ( 4)_7 = 4,
a(2) = ( 64)_7 = 46,
a(3) = ( 164)_7 = 95,
a(4) = (3164)_7 = 1124.
MAPLE
A:= op([1, 3], padic:-rootp(x^5 -2, 7, 25)):
seq(add(A[i]*10^(i-1), i=1..n), n=0..25); # Robert Israel, Aug 04 2019
PROG
(PARI) {a(n) = truncate((2+O(7^n))^(1/5))}
CROSSREFS
Cf. A309445.
Expansions of p-adic integers:
A290567 (5-adic, 2^(1/3));
A290800, A290802 (7-adic, sqrt(-6));
A290806, A290809 (7-adic, sqrt(-5));
A290803, A290804 (7-adic, sqrt(-3));
A210852, A212153 (7-adic, (1+sqrt(-3))/2);
A290557, A290559 (7-adic, sqrt(2));
A309451 (7-adic, 3^(1/5));
A309452 (7-adic, 4^(1/5));
A309453 (7-adic, 5^(1/5));
A309454 (7-adic, 6^(1/5)).
Sequence in context: A374591 A134110 A176312 * A119046 A273776 A131540
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Aug 03 2019
STATUS
approved

  NODES
COMMUNITY 1
INTERN 1