login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A322151
Number of labeled connected graphs with loops with n edges (the vertices are {1,2,...,k} for some k).
6
1, 2, 5, 27, 216, 2311, 30988, 499919, 9431026, 203743252, 4960335470, 134382267082, 4009794148101, 130668970606412, 4617468180528235, 175867725701333896, 7182126650899080024, 313063334893103361130, 14507460736615554141354, 712192629608088061633746
OFFSET
0,2
LINKS
MATHEMATICA
multsubs[set_, k_]:=If[k==0, {{}}, Join@@Table[Prepend[#, set[[i]]]&/@multsubs[Drop[set, i-1], k-1], {i, Length[set]}]];
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]], 2], And[OrderedQ[#], UnsameQ@@#, Length[Intersection@@s[[#]]]>0]&]}, If[c=={}, s, csm[Union[Append[Delete[s, List/@c[[1]]], Union@@s[[c[[1]]]]]]]]];
Table[Length[Select[Subsets[multsubs[Range[n+1], 2], {n}], And[Union@@#==Range[Max@@Union@@#], Length[csm[#]]==1]&]], {n, 5}]
PROG
(PARI)
Connected(v)={my(u=vector(#v)); for(n=1, #u, u[n]=v[n] - sum(k=1, n-1, binomial(n-1, k)*v[k]*u[n-k])); u}
seq(n)={Vec(vecsum(Connected(vector(2*n, j, (1 + x + O(x*x^n))^binomial(j+1, 2)))))} \\ Andrew Howroyd, Nov 28 2018
CROSSREFS
Row sums of A322147. The unlabeled version is A191970.
Sequence in context: A265266 A097565 A079716 * A355765 A203195 A333120
KEYWORD
nonn
AUTHOR
Gus Wiseman, Nov 28 2018
EXTENSIONS
Terms a(7) and beyond from Andrew Howroyd, Nov 28 2018
STATUS
approved

  NODES
orte 1
see 1
Story 1