login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A322904
a(n) = Sum_{k=0..n} binomial(2*n+1,2*k+1)*(n^2-1)^(n-k)*n^(2*k).
2
1, 1, 181, 38081, 14526601, 8943235489, 8138661470941, 10287228590683393, 17254778510170993681, 37095265466946847758401, 99474891266913130060486021, 325534304813775692747248543681, 1276941308627620432293188401109401, 5914558735952850788377566338591400673
OFFSET
0,3
FORMULA
For n > 0, a(n) = (1/n) * T_{2*n+1}(n) where T_{n}(x) is a Chebyshev polynomial of the first kind.
For n > 0, a(n) = (1/n) * cosh((2*n+1)*arccosh(n)).
a(n) ~ 4^n * n^(2*n). - Vaclav Kotesovec, Jan 03 2019
MATHEMATICA
a[0] = 1; a[n_] := 1/n ChebyshevT[2n+1, n];
Table[a[n], {n, 0, 13}] (* Jean-François Alcover, Jan 02 2019 *)
PROG
(PARI) {a(n) = sum(k=0, n, binomial(2*n+1, 2*k+1)*(n^2-1)^(n-k)*n^(2*k))}
(PARI) a(n) = if (n==0, 1, polchebyshev(2*n+1, 1, n)/n); \\ Michel Marcus, Jan 02 2019
(Magma) [&+[Binomial(2*n+1, 2*k+1)*(n^2-1)^(n-k)*n^(2*k): k in [0..n]]: n in [0..20]]; // Vincenzo Librandi, Jan 03 2019
CROSSREFS
Diagonal of A188646.
Sequence in context: A224991 A189342 A189778 * A107075 A228134 A066626
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Dec 30 2018
STATUS
approved

  NODES
orte 1
see 1
Story 1