login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A322907
Entry points for the 3-Fibonacci numbers A006190.
10
1, 3, 2, 6, 3, 6, 8, 6, 6, 3, 4, 6, 13, 24, 6, 12, 8, 6, 20, 6, 8, 12, 22, 6, 15, 39, 18, 24, 7, 6, 32, 24, 4, 24, 24, 6, 19, 60, 26, 6, 7, 24, 42, 12, 6, 66, 48, 12, 56, 15, 8, 78, 26, 18, 12, 24, 20, 21, 12, 6, 30, 96, 24, 48, 39, 12, 68, 24, 22, 24, 72, 6
OFFSET
1,2
COMMENTS
a(n) is the smallest k > 0 such that n divides A006190(k).
a(n) is also called the rank of A006190(n) modulo n.
For primes p == 1, 9, 17, 25, 29, 49 (mod 52), a(p) divides (p - 1)/2.
For primes p == 3, 23, 27, 35, 43, 51 (mod 52), a(p) divides p - 1, but a(p) does not divide (p - 1)/2.
For primes p == 5, 21, 33, 37, 41, 45 (mod 52), a(p) divides (p + 1)/2.
For primes p == 7, 11, 15, 19, 31, 47 (mod 52), a(p) divides p + 1, but a(p) does not divide (p + 1)/2.
a(n) <= (12/7)*n for all n, where the equality holds if and only if n = 2*7^e, e >= 1.
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..5000 from Jianing Song)
FORMULA
a(m*n) = a(m)*a(n) if gcd(m, n) = 1.
For odd primes p, a(p^e) = p^(e-1)*a(p) if p^2 does not divide a(p). Any counterexample would be a 3-Wall-Sun-Sun prime.
a(2^e) = 3 if e = 1, 6 if e = 2 and 3*2^(e-2) if e >= 3. a(13^e) = 13^e, e >= 1.
PROG
(PARI) A006190(m) = ([3, 1; 1, 0]^m)[2, 1]
a(n) = my(i=1); while(A006190(i)%n!=0, i++); i
CROSSREFS
Let {x(n)} be a sequence defined by x(0) = 0, x(1) = 1, x(n+2) = k*x(n+1) + x(n). Then the periods, ranks and the ratios of the periods to the ranks modulo a given integer n are given by:
k = 1: A001175 (periods), A001177 (ranks), A001176 (ratios).
k = 2: A175181 (periods), A214028 (ranks), A214027 (ratios).
k = 3: A175182 (periods), this sequence (ranks), A322906 (ratios).
Cf. A006190.
Sequence in context: A182649 A257698 A364384 * A071018 A144559 A155114
KEYWORD
nonn
AUTHOR
Jianing Song, Jan 05 2019
STATUS
approved

  NODES
orte 1
see 1
Story 1