OFFSET
0,1
COMMENTS
The prime zeta modulo function P_{m,r}(s) = Sum_{primes p == r (mod m)} 1/p^s generalizes the prime zeta function P(s) = Sum_{primes p} 1/p^s.
LINKS
Jean-François Alcover, Table of n, a(n) for n = 0..1005
R. J. Mathar, Table of Dirichlet L-series and Prime Zeta Modulo Functions for Small Moduli, arXiv:1008.2547 [math.NT], 2010-2015.
EXAMPLE
0.30792075860773643684250507594099872658103266547551448005201925299378554901...
MATHEMATICA
digits = 105; nmax0 = 20; dnmax = 5;
Clear[PrimeZeta31];
PrimeZeta31[s_, nmax_] := PrimeZeta31[s, nmax] = Sum[Module[{t}, t = s + 2 n*s; MoebiusMu[2n + 1] ((1/(4n + 2)) (-Log[1 + 2^t] - Log[1 + 3^t] + Log[Zeta[t]] - Log[Zeta[2t]] + Log[Zeta[t, 1/6] - Zeta[t, 5/6]]))], {n, 0, nmax}] // N[#, digits+5]&;
PrimeZeta31[2, nmax = nmax0];
PrimeZeta31[2, nmax += dnmax];
While[Abs[PrimeZeta31[2, nmax] - PrimeZeta31[2, nmax-dnmax]] > 10^-(digits+5), Print["nmax = ", nmax]; nmax += dnmax];
PrimeZeta32[2] = PrimeZetaP[2] - 1/3^2 - PrimeZeta31[2, nmax];
RealDigits[PrimeZeta32[2], 10, digits][[1]] (* Jean-François Alcover, May 06 2021, after M. F. Hasler's PARI code *)
PROG
(PARI)
s=0; forprimestep(p=2, 1e8, 3, s+=1./p^2); s \\ For illustration: using primes up to 10^N gives about 2N+2 (= 18 for N=8) correct digits.
PrimeZeta32(s)={sumeulerrat(1/p^s)-1/3^s-suminf(n=0, my(t=s+2*n*s); moebius(2*n+1)*log((zeta(t)*(zetahurwitz(t, 1/6)-zetahurwitz(t, 5/6)))/((1+2^t)*(1+3^t)*zeta(2*t)))/(4*n+2))}
A343612_upto(N=100)={localprec(N+5); digits(PrimeZeta32(2)\.1^N)}
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
M. F. Hasler, Apr 22 2021
STATUS
approved