OFFSET
0,2
COMMENTS
The prime zeta modulo function P_{m,r}(s) = Sum_{primes p == r (mod m)} 1/p^s generalizes the prime zeta function P(s) = Sum_{primes p} 1/p^s.
LINKS
R. J. Mathar, Table of Dirichlet L-series and Prime Zeta Modulo Functions for Small Moduli, arXiv:1008.2547 [math.NT], 2010-2015.
EXAMPLE
P_{3,2}(4) = 0.06418614569655777899009908658740273681...
PROG
(PARI) s=0; forprimestep(p=2, 1e8, 3, s+=1./p^4); s \\ For illustration: using primes up to 10^N gives about 3N+2 (= 26 for N=8) correct digits.
(PARI) A343614_upto(N=100)={localprec(N+5); digits((PrimeZeta32(4)+1)\.1^N)[^1]} \\ see for the function PrimeZeta32.
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
M. F. Hasler, Apr 22 2021
STATUS
approved