login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A343614
Decimal expansion of P_{3,2}(4) = Sum 1/p^4 over primes == 2 (mod 3).
2
0, 6, 4, 1, 8, 6, 1, 4, 5, 6, 9, 6, 5, 5, 7, 7, 7, 8, 9, 9, 0, 0, 9, 9, 0, 8, 6, 5, 8, 7, 4, 0, 2, 7, 3, 6, 8, 0, 9, 7, 5, 6, 3, 6, 2, 3, 4, 8, 6, 8, 0, 6, 4, 0, 8, 8, 4, 6, 2, 5, 4, 9, 2, 2, 5, 0, 6, 2, 1, 9, 1, 2, 6, 2, 1, 9, 3, 8, 9, 9, 8, 6, 4, 7, 9, 6, 5, 5, 2, 6, 9, 1, 6, 3, 8, 2, 2, 4, 0, 7
OFFSET
0,2
COMMENTS
The prime zeta modulo function P_{m,r}(s) = Sum_{primes p == r (mod m)} 1/p^s generalizes the prime zeta function P(s) = Sum_{primes p} 1/p^s.
FORMULA
P_{3,2}(4) = P(4) - 1/3^4 - P_{3,1}(4) = A085964 - A021085 - A343624.
EXAMPLE
P_{3,2}(4) = 0.06418614569655777899009908658740273681...
PROG
(PARI) s=0; forprimestep(p=2, 1e8, 3, s+=1./p^4); s \\ For illustration: using primes up to 10^N gives about 3N+2 (= 26 for N=8) correct digits.
(PARI) A343614_upto(N=100)={localprec(N+5); digits((PrimeZeta32(4)+1)\.1^N)[^1]} \\ see for the function PrimeZeta32.
CROSSREFS
Cf. A003627 (primes 3k-1), A085964 (PrimeZeta(4)), A021085 (1/3^4).
Cf. A343624 (same for primes 3k+1), A086034 (for primes 4k+1), A085993 (for primes 4k+3), A343612 - A343619 (P_{3,2}(2..9): same for 1/p^2, ..., 1/p^9).
Sequence in context: A309222 A324034 A365319 * A086241 A378412 A204023
KEYWORD
nonn,cons
AUTHOR
M. F. Hasler, Apr 22 2021
STATUS
approved

  NODES
COMMUNITY 1
INTERN 1