login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A346337
Numbers that are the sum of nine fifth powers in exactly two ways.
7
4101, 4132, 4163, 4194, 4225, 4343, 4374, 4405, 4436, 4585, 4616, 4647, 4827, 4858, 5069, 5124, 5155, 5186, 5217, 5366, 5397, 5428, 5608, 5639, 5850, 6147, 6178, 6209, 6389, 6420, 6631, 7170, 7201, 7225, 7256, 7287, 7318, 7412, 7467, 7498, 7529, 7709, 7740
OFFSET
1,1
COMMENTS
Differs from A345619 at term 306 because 52418 = 1^5 + 3^5 + 3^5 + 3^5 + 3^5 + 5^5 + 6^5 + 6^5 + 8^5 = 1^5 + 1^5 + 4^5 + 4^5 + 4^5 + 4^5 + 6^5 + 6^5 + 8^5 = 1^5 + 3^5 + 3^5 + 3^5 + 3^5 + 4^5 + 7^5 + 7^5 + 7^5.
LINKS
EXAMPLE
4101 is a term because 4101 = 1^5 + 1^5 + 1^5 + 1^5 + 3^5 + 3^5 + 3^5 + 3^5 + 5^5 = 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 4^5 + 4^5 + 4^5 + 4^5.
PROG
(Python)
from itertools import combinations_with_replacement as cwr
from collections import defaultdict
keep = defaultdict(lambda: 0)
power_terms = [x**5 for x in range(1, 1000)]
for pos in cwr(power_terms, 9):
tot = sum(pos)
keep[tot] += 1
rets = sorted([k for k, v in keep.items() if v == 2])
for x in range(len(rets)):
print(rets[x])
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved

  NODES
orte 2
see 1
Story 1