login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A349618
Dirichlet convolution of arithmetic derivative with A325126 [Dirichlet inverse of rad(n)].
8
0, 1, 1, 2, 1, 0, 1, 6, 3, 0, 1, 2, 1, 0, 0, 14, 1, 6, 1, 2, 0, 0, 1, 2, 5, 0, 15, 2, 1, 0, 1, 34, 0, 0, 0, 18, 1, 0, 0, 2, 1, 0, 1, 2, 6, 0, 1, 6, 7, 20, 0, 2, 1, 6, 0, 2, 0, 0, 1, 0, 1, 0, 6, 78, 0, 0, 1, 2, 0, 0, 1, 42, 1, 0, 20, 2, 0, 0, 1, 6, 51, 0, 1, 0, 0, 0, 0, 2, 1, 0, 0, 2, 0, 0, 0, 10, 1, 42, 6, 50, 1, 0, 1, 2, 0
OFFSET
1,4
LINKS
FORMULA
a(n) = Sum_{d|n} A003415(d) * A325126(n/d).
MATHEMATICA
f[p_, e_] := e/p; d[1] = 0; d[n_] := n*Plus @@ f @@@ FactorInteger[n]; f2[p_, e_] := -p*(1 - p)^(e - 1); s[1] = 1; s[n_] := Times @@ f2 @@@ FactorInteger[n]; a[n_] := DivisorSum[n, d[#]*s[n/#] &]; Array[a, 100] (* Amiram Eldar, Nov 23 2021 *)
PROG
(PARI)
A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
A007947(n) = factorback(factorint(n)[, 1]); \\ From A007947
memoA325126 = Map();
A325126(n) = if(1==n, 1, my(v); if(mapisdefined(memoA325126, n, &v), v, v = -sumdiv(n, d, if(d<n, A007947(n/d)*A325126(d), 0)); mapput(memoA325126, n, v); (v)));
A349618(n) = sumdiv(n, d, A003415(d)*A325126(n/d));
CROSSREFS
Cf. also A349394, A349612.
Sequence in context: A108723 A291584 A352451 * A321615 A011126 A266854
KEYWORD
nonn
AUTHOR
Antti Karttunen, Nov 23 2021
STATUS
approved

  NODES
orte 1
see 1
Story 1