login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A350483
G.f. A(x) satisfies: A(x) = A(x^4 - x^6)/x^3.
5
1, -1, 0, 0, -1, 3, -3, 1, 0, 0, 0, 0, 0, 0, 0, 0, -1, 9, -36, 84, -123, 93, 81, -459, 978, -1346, 1152, -132, -1649, 3681, -5010, 4690, -2496, -858, 4147, -6201, 6396, -5002, 3003, -1365, 455, -105, 15, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 33
OFFSET
1,6
FORMULA
G.f. A(x) = Sum_{n>=1} a(n)*x^(2*n-1) satisfies:
(1) A(x) = A(x^4 - x^6)/x^3.
(2) R(x^3*A(x)) = x^4 - x^6, where R(A(x)) = x.
(3) A(x) = Product_{n>=0} F(n), where F(0) = x, F(1) = 1-x^2, and F(n+1) = 1 - (1 - F(n))^4 * F(n)^2 for n > 0.
EXAMPLE
G.f.: A(x) = x - x^3 - x^9 + 3*x^11 - 3*x^13 + x^15 - x^33 + 9*x^35 - 36*x^37 + 84*x^39 - 123*x^41 + 93*x^43 + 81*x^45 + ...
The series reversion is here denoted R(x) so that R(A(x)) = x where
R(x) = x + x^3 + 3*x^5 + 12*x^7 + 56*x^9 + 282*x^11 + 1494*x^13 + 8207*x^15 + 46332*x^17 + ... + A350482(n)*x^(2*n-1) + ...
and which by definition also satisfies R(x^3*A(x)) = x^4 - x^6.
GENERATING METHOD.
One may generate the g.f. A(x) using the following method.
Define F(n), a polynomial in x of order 2*6^(n-1), by the following recurrence:
F(0) = x,
F(1) = (1 - x^2),
F(2) = (1 - x^8 * (1-x^2)^2),
F(3) = (1 - x^32 * (1-x^2)^8 * F(2)^2),
F(4) = (1 - x^128 * (1-x^2)^32 * F(2)^8 * F(3)^2),
F(5) = (1 - x^512 * (1-x^2)^128 * F(2)^32 * F(3)^8 * F(4)^2),
...
F(n+1) = 1 - (1 - F(n))^4 * F(n)^2
...
Then the g.f. A(x) equals the infinite product:
A(x) = x * F(1) * F(2) * F(3) * ... * F(n) * ...
that is,
A(x) = x * (1-x^2) * (1 - x^8*(1-x^2)^2) * (1 - x^32*(1-x^2)^8*(1 - x^8*(1-x^2)^2)^2) * (1 - x^128*(1-x^2)^32*(1 - x^8*(1-x^2)^2)^8*(1 - x^32*(1-x^2)^8*(1 - x^8*(1-x^2)^2)^2)^2) * ...
SPECIFIC VALUES.
The infinite product formula allows us to evaluate the function A(x) at certain x rather quickly.
A(1/2) = (1/2) * (3/2^2) * (4087/2^12) * (4722366482760053097487/2^72) * ... = 0.37417602538194148451978837081...
A(2/3) = (2/3) * (5/3^2) * (525041/3^12) * ... = 0.36591009281837971406458290316...
A(1/3) = (1/3) * (8/3^2) * (531377/3^12) * ... = 0.29626061413597559076118753086...
The first relative maximum value of A(x) is given by
A(0.5712201306311149010325669...) = 0.3828554098922613628968808...
PROG
(PARI) {a(n) = my(A, R=[1, 0]); for(i=1, n, R=concat(R, 0);
R[#R] = -polcoeff( x^4*(1 - x^2) - subst(x*Ser(R), x, x^3 * serreverse(x*Ser(R))), #R+3) );
A=Vec(serreverse(x*Ser(R))); H=A; A[n]}
for(n=1, 70, print1(a(2*n-1), ", "))
(PARI) /* Using Infinite Product Formula */
N = 400; \\ set limit on order of polynomials to be 2 times desired number of terms
{F(n) = my(G=x); if(n==0, G=x, if(n==1, G = (1-x^2), G = 1 - (1 - F(n-1))^4 * F(n-1)^2 +x^2*O(x^N) )); G}
{a(n) = my(A = prod(k=0, #binary(n), F(k) +x*O(x^n))); polcoeff(A, n)}
for(n=1, 70, print1(a(2*n-1), ", "))
CROSSREFS
KEYWORD
sign
AUTHOR
Paul D. Hanna, Jan 01 2022
STATUS
approved

  NODES
eth 2
orte 1
see 1
Story 1