login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A364347
Numbers k > 0 such that if prime(a) and prime(b) both divide k, then prime(a+b) does not.
22
1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 19, 20, 22, 23, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 55, 56, 57, 58, 59, 61, 62, 64, 67, 68, 69, 71, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 85
OFFSET
1,2
COMMENTS
Or numbers without any prime index equal to the sum of two others, allowing re-used parts.
Also Heinz numbers of a type of sum-free partitions counted by A364345.
EXAMPLE
We don't have 6 because prime(1), prime(1), and prime(1+1) are all divisors.
The terms together with their prime indices begin:
1: {}
2: {1}
3: {2}
4: {1,1}
5: {3}
7: {4}
8: {1,1,1}
9: {2,2}
10: {1,3}
11: {5}
13: {6}
14: {1,4}
15: {2,3}
16: {1,1,1,1}
17: {7}
19: {8}
20: {1,1,3}
MATHEMATICA
prix[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
Select[Range[100], Intersection[prix[#], Total/@Tuples[prix[#], 2]]=={}&]
CROSSREFS
Subsets of this type are counted by A007865 (sum-free sets).
Partitions of this type are counted by A364345.
The squarefree case is counted by A364346.
The complement is A364348, counted by A363225.
The non-binary version is counted by A364350.
Without re-using parts we have A364461, counted by A236912.
Without re-using parts we have complement A364462, counted by A237113.
A001222 counts prime indices.
A108917 counts knapsack partitions, ranks A299702.
A112798 lists prime indices, sum A056239.
A323092 counts double-free partitions, ranks A320340.
Sequence in context: A023800 A320340 A350838 * A228869 A088725 A094520
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jul 26 2023
STATUS
approved

  NODES
eth 1
orte 1
see 1
Story 1