login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A367687
a(n) is the first prime p such that n*p+1 is the product of n primes counted with multiplicity.
1
2, 7, 17, 47, 79, 9479, 41, 5923, 199, 33461, 2141, 69173177, 11579, 7655281, 20753, 64869017, 233231, 2622816297743, 341477, 14508897313, 8138947, 24565981007, 27445337, 90698401133219401, 313566167, 2552728502809, 229909997, 23451738297083, 948780491, 20677177107714198558766009, 3390080033
OFFSET
1,1
LINKS
FORMULA
A001222(n*a(n)+1) = n.
EXAMPLE
a(3) = 17 because 17 is prime and 3 * 17 + 1 = 52 = 2^2 * 13 is the product of 3 primes, and no smaller prime works.
MAPLE
f:= proc(n)
uses priqueue;
local Q, t, q, i;
initialize(Q);
q:= 2;
while n mod q = 0 do q:= nextprime(q) od:
insert([-q^n, q, n], Q);
do
t:= extract(Q);
if -t[1]-1 mod n = 0 and isprime((-t[1]-1)/n) then return (-t[1]-1)/n fi;
q:= nextprime(t[2]);
while n mod q = 0 do q:= nextprime(q) od;
for i from 1 to t[3] do
insert([t[1]*(q/t[2])^i, q, i], Q);
od
od;
end proc:
map(f, [$1..40]);
CROSSREFS
Sequence in context: A108479 A178441 A014742 * A085411 A180665 A275209
KEYWORD
nonn,look
AUTHOR
Zak Seidov and Robert Israel, Nov 26 2023
STATUS
approved

  NODES
orte 1
see 1
Story 1