login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A376335
Irregular triangle read by rows: T(n,k) = A008949(n-1,k) if 0 <= k <= n - 2 otherwise A008949(n-1,2*n-4-k) if n - 2 <= k <= 2*n - 4.
0
1, 1, 3, 1, 1, 4, 7, 4, 1, 1, 5, 11, 15, 11, 5, 1, 1, 6, 16, 26, 31, 26, 16, 6, 1, 1, 7, 22, 42, 57, 63, 57, 42, 22, 7, 1, 1, 8, 29, 64, 99, 120, 127, 120, 99, 64, 29, 8, 1, 1, 9, 37, 93, 163, 219, 247, 255, 247, 219, 163, 93, 37, 9, 1, 1, 10, 46, 130, 256, 382, 466, 502, 511, 502, 466, 382, 256, 130, 46, 10, 1
OFFSET
2,3
LINKS
Nsibiet E. Udo, Praise Adeyemo, Balazs Szendroi, and Stavros Argyrios Papadakis, Ideals, representations and a symmetrised Bernoulli triangle, arXiv:2409.10278 [math.AC], 2024. See p. 2.
FORMULA
Sum_{k=0..2*n-4} T(n,k) = A000337(n-1). [Udo et al.]
EXAMPLE
The triangle begins as:
1;
1, 3, 1;
1, 4, 7, 4, 1;
1, 5, 11, 15, 11, 5, 1;
1, 6, 16, 26, 31, 26, 16, 6, 1;
1, 7, 22, 42, 57, 63, 57, 42, 22, 7, 1;
...
MATHEMATICA
b[n_, k_]:=Sum[Binomial[n, j], {j, 0, k}]; T[n_, k_]:=If[0<=k<=n-2, b[n-1, k], b[n-1, 2n-4-k]]; Table[T[n, k], {n, 2, 10}, {k, 0, 2n-4}]//Flatten
CROSSREFS
Sequence in context: A263950 A160870 A345279 * A342447 A025255 A296006
KEYWORD
nonn,easy,tabf
AUTHOR
Stefano Spezia, Sep 20 2024
STATUS
approved

  NODES
orte 1
see 2
Story 1