This site is supported by donations to The OEIS Foundation.

Index to OEIS: Section Ab

From OeisWiki
Jump to: navigation, search

Index to OEIS: Section Ab


[ Aa | Ab | Al | Am | Ap | Ar | Ba | Be | Bi | Bl | Bo | Br | Ca | Ce | Ch | Cl | Coa | Coi | Com | Con | Cor | Cu | Cy | Da | De | Di | Do | Ea | Ed | El | Eu | Fa | Fe | Fi | Fo | Fu | Ga | Ge | Go | Gra | Gre | Ha | He | Ho | Ia | In | J | K | La | Lc | Li | Lo | Lu | M | Mag | Map | Mat | Me | Mo | Mu | N | Na | Ne | Ni | No | Nu | O | Pac | Par | Pas | Pea | Per | Ph | Poi | Pol | Pos | Pow | Pra | Pri | Pro | Ps | Qua | Que | Ra | Rea | Rel | Res | Ro | Ru | Sa | Se | Si | Sk | So | Sp | Sq | St | Su | Sw | Ta | Te | Th | To | Tra | Tri | Tu | U | V | Wa | We | Wi | X | Y | Z | 1 | 2 | 3 | 4 ]


abc conjecture, sequences related to :
A120498 (numbers C from the abc conjecture), A216323 (b in triples with a=1), A216328 (b in triples with a = 2).
list of "abc-hits": A225426 (the triples), A130510, A130511, A130512 (values of c, a, rad(abc)), A225425 (# "abc-hits" with c < 10^n).
search for records of the merit function: (admitting only specific C values)
A216370 (# triples with quality q > 1 and c < 10^n),
A147639 (such that C=2^k), A147638 (associated B) A147640 (assoc. A),
A147306 (such that C is 3-smooth), A147305 (assoc. B) A147307 (assoc. A).
A147641 (such that C=23^k), A147642 (B-values), A147643 (A-values).
less specifically related: A007947 (radical), A001220 (Wieferich primes),
A002587 (largest prime factor of 2^n + 1), A010846 (# smaller numbers with no other prime factors),
A191100 ([rad(ABC)]/C for A=3, C=A+B), A190846 (same for A=1), A191093 (same for A=2)
A039678 (a such that a^(p-1)-1 is divisible by p^2), A147803 (m coprime to 5 minimizing A007947(m(5^n-m))), A147804 (m coprime to 7 minimizing A007947(m(7^n-m))), A185103 (Smallest k > 1 such that k^(n-1) == 1 (mod n^2))
maxima and minima of rad(m(n-m)n) : A147298 (minima), A147300 (m for minima).
p-smooth {n,n+1}: A085152 (p=5), A085153 (p=7), A002071 (# p-smooth pairs)

abelian numbers: A051532
absolute primes: see primes, absolute
abundance: see abundancy

abundancy , sequences related to :
abundancy: A033880*, A033879, A005579, A005347, A005580, A033881, A033882
abundancy: see also deficiency
abundant numbers: A002093, A002182, A005101*, A091191
abundant numbers: consecutive: A094268
abundant numbers: odd: A005231*, A006038, A064001
abundant numbers: see also A004394

acetylene: A000642, A005957

Ackermann function, sequences related to :
Ackermann function: A001695, A046859, A014221
Ackermann function: see also sequences which grow too rapidly to have their own entries

acyclic digraphs, see digraphs, acyclic

add 1, multiply by 1, add 2, multiply by 2, etc., sequences related to :
add 1, multiply by 1, add 2, multiply by 2, etc.: A019463, A019460, A019462, A019461, A082448
add m then reverse digits, sequences related to
add m then reverse digits: A007396, A003608, A007397, A007398, A007399
addition chains, sequences related to :
addition chains: A003064*, A003065*, A003313*, A005766, A008057, A008928, A010787, A079300
additive bases , sequences related to :
additive bases: A004133, A004135, A004136
additive bases: see also Golomb rulers
additive basis, sequences which are an:
order 1:
order 2:
order 3:
order 4:
order 5:
order 6:
order 7:
order 8:
order 9:
order 10:
additive sequences sequences related to :
additive sequences (00): definition: a(n*m) = a(n) + a(m) if GCD(n,m) = 1
additive sequences (01): completely additive A001222, A001414, A007814, A007949, A048675, A056239, A067666, A076649,
additive sequences (02): completely additive A078458, A078908, A078909, A112765, A113177
additive sequences (03): A001221, A005063-A005085, A005087-A005091, A005094, A008472, A008474,
additive sequences (04): A008475, A008476, A046660, A052331, A055631, A056169, A056170, A059841,
additive sequences (05): A064372, A064415, A066328, A079978, A080256, A081403, A087207, A090885,
additive sequences (06): A106490, A106492, A113178, A113222, A115357, A121262, A086275
additive sequences (07): completely additive fractions: A083345/A083346
additive sequences (08): additive fractions: A028235/A007947, A028236/A000027
additive sequences (09): totally additive: see additive sequences, completely additive
additive sequences (10): strongly additive: see additive sequences, completely additive

Aho-Sloane paper: see entry for a(n+1)=a(n)^2 + ...
Airey's converging factor: A001662
Aitken's array: A011971*


[ Aa | Ab | Al | Am | Ap | Ar | Ba | Be | Bi | Bl | Bo | Br | Ca | Ce | Ch | Cl | Coa | Coi | Com | Con | Cor | Cu | Cy | Da | De | Di | Do | Ea | Ed | El | Eu | Fa | Fe | Fi | Fo | Fu | Ga | Ge | Go | Gra | Gre | Ha | He | Ho | Ia | In | J | K | La | Lc | Li | Lo | Lu | M | Mag | Map | Mat | Me | Mo | Mu | N | Na | Ne | Ni | No | Nu | O | Pac | Par | Pas | Pea | Per | Ph | Poi | Pol | Pos | Pow | Pra | Pri | Pro | Ps | Qua | Que | Ra | Rea | Rel | Res | Ro | Ru | Sa | Se | Si | Sk | So | Sp | Sq | St | Su | Sw | Ta | Te | Th | To | Tra | Tri | Tu | U | V | Wa | We | Wi | X | Y | Z | 1 | 2 | 3 | 4 ]