Introduction
Familial hypercholesterolaemia (FH) is an inherited cause of raised cholesterol resulting in premature coronary heart disease (CHD) and greatly increased mortality risk, when left untreated.1–3 In most countries, over 80% of people with FH remain undiagnosed.4 5 This presents a major challenge for health systems, with as many as 1 in 250 people affected.6 Existing international guidelines recommend clinicians use clinical tools such as Dutch Lipid Clinic Network (DLCN) score or Simon-Broome criteria to detect possible FH, prior to definitive genetic testing.4 7 8 However, in addition to cholesterol measures, all these tools require detailed family histories of hypercholesterolaemia and premature CHD and examination for physical signs of FH, to be undertaken.1 9 This makes them less useful for case-finding in the general community population. Recent UK guidelines have additionally recommended systematically identifying potential cases through searching primary care electronic healthcare records (EHRs) for patients using certain cholesterol thresholds (under 30 years old with cholesterol over 7.5 mmol/L or over 9.0 mmol/L in older patients), roughly aligned to the 99th population centile for cholesterol levels in the general population.7 Further consideration is that these primary care FH case-finding tools, used to identify initial possible FH cases, should have high specificity to ensure that most of those with actual FH are not missed.
Current systematic approaches to identify FH in primary care records only identify a minority of patients with FH.10–13 To improve detection of the majority of individuals still not diagnosed with the condition, we developed a Familial Hypercholesterolaemia Case Ascertainment Tool (FAMCAT).14–16 The FAMCAT algorithm takes account of the interaction between family history, statin prescribing, triglycerides and secondary causes, and focuses on those factors that are readily extractable from routine entries in patients’ EHRs, searching the available data to identify those with highest likelihood of FH. It is intended as a case-finding tool to identify those eligible for further assessment, specialist referral and genetic testing for possible FH.
The FAMCAT 1 algorithm was originally derived and internally validated using data from 3 million patients in UK primary care using the Clinical Practice Research Datalink—broadly representative of the UK general population in terms of sex, age and ethnicity. It includes elements of existing clinical criteria tools, such as DLCN and Simon-Broome, in addition to other variables such as triglyceride level, and clinical diagnosis of diabetes and chronic kidney disease based on coded records, to improve diagnostic accuracy.14 FAMCAT has been further externally validated in two large UK primary care population studies.15 16 These three previous studies showed FAMCAT was highly predictive of FH documented in primary care records with similar performance (area under the curve (AUC) between 0.83 to 0.86). A further advancement of the algorithm has been developed (FAMCAT 2) by incorporating past history of premature CHD, leading to an improved AUC of 0.87.15 We originally evaluated the FAMCAT 1 and FAMCAT 2 algorithms at an FH probability threshold of 0.002 which aligns to the original estimated FH prevalence of 1 in 500. This prevalence is now accepted to be 1 in 250.6 In this study, to optimise the clinical value of the FAMCAT 1 and 2 case-finding algorithms, we estimated the performance and probability threshold of these algorithms at 95% specificity, using FH genetic testing as the reference standard. Further, we compared the performance of the algorithms at this specificity against established case-finding criteria (DLCN, Simon-Broome and recommended cholesterol threshold) in this population.