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data, it is useful to investigate how robust the resulis are to different postulates. The aim
of this paper is to take the extreme view where the choice of the break poinis is effectively
made to be perfectly correlated with the data. This case is instructive to study because if
one can still reject the unit root hypothesis under such a scenario it must be the case that
it would be rejected under a less stringent assumption.

We proceed as follows for the practical implementation. Again, as in the previous
analysis, only one possible break point is allowed for any single series. This break point is
first chosen such that the t-statistic for testing the null hypothesis of a unit root is smallest
among all possible break points. Hence, using such a procedure, the choice of the break
point is indeed perfectly correlated with the data. We also consider choosing the break
point that corresponds to 3 minimal t~statistic on the parameter of the change in the trend
function. This allows the mild a priori imposition of a one-sided change (i.e. a decrease in
the intercept or the slope of the trend function). As will be seen, such a minor change
allows substantial gains in power. We also investigate various issues regarding the choice of
the truncation lag parameter in the estimated autoregressions and the effect on the critical
values of using different criteria for choosing this lag length.

Our paper is closely related to and complements those of Banerjee, Lumsdaine and
Stock (1992) and Zivot and Andrews (1992) in that similar procedures and series are
analyzed. We extend their analysis in several directions. On a methodological level, we
consider the asymptotic distribution of the sequential test based on the minimal value of
the unit Toot tests over possible break points. We show the results of Zivot and Andrews
(1992) to be valid without any trimming at the end points. The proof, which is of interest
in itself, is based on projection arguments and introduces a method that can be applied to a
variety of frameworks. Concerning the empirical results, our analysis is more extensive and
shows that alternative procedures can lead to conclusions that are less favorable to the unit
root than suggested in these two studies. We pay particular attention to the importance of
the selection of the truncation lag on the outcome of the tests.

The paper is organized as follows. Section 2 reviews the statistical models and
statistics involved. Section 3 discusses the asymptotic distribution of the test statistics
under the null hypothesis of a unit root. Section 4 analyzes their finite sample distribution
using simulation methods. Section 5 contains simulation experiments providing information
about their and power under various data—generating processes. Section 6 presents the
empirical results for the Nelson-Plosser (1982) data set. Section 7 analyzes an international















st

-

In the case where the noise function is assumed to be generated from a finite order
autoregressive process, we can use results in Hall (1990) to show that the data—dependent
methods described above lead to tests having the same asymptotic properties as would
prevail if the true autoregressive order was selected to estimate the autoregression provided
kmax is selected greater than the true value. In the more general case where
moving-average components are permitted, Ng and Perron (1994) show that tests with
such data dependent methods to select k have the same asymptotic distribution provided
kmax3/T converges to 0.

We choose these "general to specific" procedures rather than methods based on
information eriteria, such as AIC, because the latter tend to select very parsimonious
models leading to tests with sometimes serious size distortions and/or power losses. This
finite sample performance is conusistent with the finding of Ng and Perron (1994) who show
that using an information criterion leads to a selected value of k that increases to infinity,
as T increases, only at the very slow rate log(T). These theoretical results are in accord
with various empirical results showing that using the AIC leads to very small values of k
being selected (typically 0 or 1) and that oftentimes the estimated residuals exhibit seria]
correlation (see Perron (1994)).

3. THE ASYMPTOTIC DISTRIBUTION OF THE STATISTICS.

In this section, we consider the limiting distribution of the statistics. To simplify the
derivations we suppose the data—generating process to be a random walk,

y‘=Yt_1+eﬁ (t=0’ 1! bt ] T) (4)

where the errors €, are martingale differences, and consider the statistics constructed with
k = 0. Using arguments in Ng and Perron (1994), we can then state that the resulting
limiting distribution remains the same when additional correlation is present and the
statistics are constructed with one of the data-dependent method to select k. This holds
provided kmax3/T - 0 as T - 0. This is the same strategy as used 'by Zivot and Andrews
(1992) and Banerjee, Lumsdaine and Stock (1992). Al statistics are asymptotically
invariant to a change in intercept. Vogelsang and Perron (1994) show that they are not
asymptotically invariant to a change in slope but that the asymptotic distribution
corresponding to a zero change in slope is a better approximation to the finite sample
distribution for values typically encountered in practice. The following Theorem concerning
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compute the integrals. The critical values obtained are presented in the rows labelled "T =
00" in panel A of Tables 1, 2 and 3.

This relaxation of the need for trimming at the end points does not appear to be
possible for the tests whereby the break point is chosen with respect to the t-statistic on
the coefficient of the intercept or slope change. The asymptotic distributions of t;’ K1) and
t;" 0 (1) assuming the break point o be in some compact subset was derived in Banerjee,
Lumsdaine and Stock ( 1992). The critical values are reproduced in Panels B and C of Table
L. Similar asymptotic results were obtained by Vogelsang and Perron (1994) for t;’ ,y(i) and
t;»l')'l (i) (i = 1, 2) and the critical values are in Panels B and C of Tables 2 and 3.

4. FINITE SAMPLE CRITICAL VALUES.

In this section we report simulation experiments to evaluate the finite sample
distributions of the statistics under the null hypothesis of & unit root. Our aim is to assess
the quality of the asymptotic approximation and to provide alternative sets of critical
values when this approximation is inadequate. We consider the leading case of a random
walk where the data are generated by:

yt =yl—‘1+et; y0=0’ (5)

with €, ~ iid. N(0,1). This setup allows us to assess the effects of different methods to
select the truncation lag, especially those that are data~dependent. In the next section, we
evaluate the size and power of the tests under various specifications for the value of the
change in intercept and /or slope and the presence of additional correlation in the errors,

To assess the sensitivity of the distributions to the particular value of k used, we
provide, for each sample size considered, simulated critical values for different
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These theoretical issues are consistent with the empirical results of BLS who report values
of k at 0 or 1 for all countries when using an information criterion. In no cases does our
methods select such low values (except for Italy where we both agree for a non-rejection).

8. EMPIRICAL RESULTS FOR SOME ADDITIONAL SERIES.

Some additional series from alternative sources are analyzed in this Section. First, for
the Real per capita GNP and Money Supply series, we use data sources other than the
Nelson~Plosser data set. As discussed in Section 6, rejections of the unit root are borderline
for these series when allowance is made for an unknown break point without imposing a
one-sided change. To provide alternative evidence, we first present in Table 11 results
related to the Friedman and Schwartz (1982) Real per capita GNP series for the same
period (1909-1970), which is graphed in Figure 8. The results imply a maximum p-value of
-03 under any method to select k and Ty 5, allowing an €asy rejection of the unit root
hypothesis for this series.

Consider now an alternative source for the money supply variable, the annual M2
series supplied in Balke and Gordon {1986) from 1869 to 1973, graphed in Figure 9. The
results in Table 11 again show a strong rejection of the unit root with a p-value of at most
.05 under any procedure.

Following the work of Hall (1978), much interest has been given to the time series
behavior of consumption. To this effect, we analyze a data set consisting of historical series
covering 1889 to 1973 for Nominal Consumption, Real Consumption, their per capita
Counterparts, the Consumption Price Index and also the Population serjes. These data are
a subset of those used in Grossman and Shiller (1981). The graph of these series are
presented in Figures 10 through 15. The results concerning the unit root tests are also
presented in Table 11. For the Nominal and Real Consumption series the unit root can be
rejected with a p-value less than -01 under any procedure. The series again exhibit a
significant decline in their level in 1929. For the Nominal per capita Consumption series, a
rejection is still possible with p-values at most .03 but the picture is different with the

——— e

5 The rejection of the unit root for the Friedman and Schwartz series is robust to using
the longer samples 1900-1973 and 1890~1973. It is not robust to using the whole
sample 1869-1973. In the latter case, however, the unit root can be rejected using a
standard Dickey-Fuller procedure without any allowance for a possible change in the
trend function.
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APPENDIX: Proof of Theorem 1.

To simplify cross-references, we adopt the notation of Zivot and Andrews (1992),

henceforth referred to as 2-A. Let 5, = Zi_1 ¢ (8 = 0) and Xp(r) = o711/ zsm}, (-

DITSr < /T (forj=1, ..., T), where o° = limep o, TE(S2) and [-] denotes the integer
part of the argument. Since {et} is i.i.d. with finite variance, we have Xplr) = W(1), where
=% denotes weak convergence in distribution (from the space D[0,1] to the space C[0,1] using
the uniform metric on the space of functions on [0,1]) with W(r) a standard Wieper process

on [0,1]. Also, a% = T"lﬁ?e? - 02 where +_ denotes convergence in probability, Onmitting

the one-time dummy variable D(’I‘b)t (since it is asymptotically negligeable), we consider
the following regressions:

¥ = ﬂi(z\) z:T(A) + ai(.l\) Yipte, (t=1,..,1), (A1)

for models i = 1, 2. The vector z:T(A) éncompasses the deterministic components of the
model and depends explicitly on A, the break fraction, and T, the sample size. For example,

z‘l’T(A)' = (1, t, DU,(4)). Let Z.;,(A,r) = 6.;, szr],T(’\) be a rescaled version with 6,;\ a
diagonal matrix of weights. For example, 6.} = diag(1, T—l, 1). We also define the limiting
functions Zl(/\,r) = (1, 1, du(A,r))’ where du(Ar) = 1{r > 1), and Z2(A,r) = (1, 1, du(A,1),
dt*(A,1)}’ where dt*(Ar) = 1(r > A)z - A). Note that, as argued in Z~A, we do not have

Z,}.(A,r) =} Zi(,\,r) (i=A,CasT- 00, using the uniform metric on the space of functions
on D[0, 1]. The proof nevertheless remains valid without the need 1o introduce another
metric 10 guarantee such convergence results. For simplicity, we ‘henceforth drop the
subscript denoting the model.

It is convenient to first transform (A.1) as follows, Let Pzq(}) = [le ) -,
Pzp ()] be the linear map projecting onto the space spanned by the columns of )zT()s)’ =
(ZI,T(’\)’ . zT,T(’\))' By definition Pzp(3) = zT(A)(z.i,()«)zT(A)) zp(2)’ where (-)
denotes a g-inverse. Premultiplying by MzT(A) =(I- PzT(A)), (A.1) can be written, in
matrix notation, as:

Mz (A)Y = H(AMzp(A)Y_) + Mag(Ae, (A2)






nfyefo,1ja() =

BXp(n), f X p)eXg(e), Pag(A)X ), S TP (@)X y(e), s (2)) + OB

where
g = h*[b[H, [X(r), Pap(A)Xp(n), Byl [ (I,XT(r)dXT(r), S 3PzT(f\)XT(r)dXT(r)L sp(M]],

with h*(m) = ianE[G l]xn(A) for any real function m = m(-) on [0, 1}; and for any real

aneaons (), mgl-), mg(-) on [01), blmy(3), my(A), mg)] = m (21 2m(0)/
mg(A). The functional H, and H, are defined by {(A.3) and (A.4). The weak convergence
results for each of the elements is contained in the following lemma,

Lemma A.1: The Jollowing convergence results hold jointly:
a) Xoplr) = W(r);
1 1 .
) f X p(r)aX p(r) = [ Iwir)awer); .
c) PzT()\)XT(r) = Pz(A)W(r) = Z(A,r)’[f (I)Z(/\,s)Z(A,s)’ ds]—f éZ()\,s) W(s)ds;
@) [ 3P p2)X p(r)aX pfr) = S ipywirjawer);
¢)s200) = o% 4 0, (1)-

Parts (a) and (b) are standard results, and part (e) follows using (c) and (d) and the

fact that 'I‘”lli'fet “p a2 To prove part {c), we start with the following Lemma which
fotlows from Theorem 5.5 of Billingsley (1968).

Lemma A.2: Pep(A)X T(r) = Py(M)W(r) if X lr) = W(r) and Jor any sequence of
Junctions { vp(s)} (0¢s¢ 1) approaching v(s), we have:

PzT(vT(s)) - Pzfv(s)}, (A.5)

where PzT(vT(s)) = ZT(J\,r)’[fzzr(A,s)ZT(/\,a)’ ds]_fng(z\,s)vT(s)ds.

and - Pa(u(s)) = 200,r)' ([ L200,5)207, ) as] [ t200,5)u(5)as.
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Proof: Since H, and H, are continuous functions of their respective elements, the proof
follows if each of the elements i8 bounded over 0,1} with W-probability one. W(-) is

bounded with W-probability one and s0 is f éW(r)dW(r) as discussed in Z-A. Using

arguments similar to those in Z—A,f(l)Pz(A)W(r)dW(r) will be continuous if Pz{A)W(r) is
continuous, i.e. if 8uPyerg 1 |P2{A}W(r}| < co. We note that Pz(-) is a linear operator that
maps an element on C[O,, IH (the Wiener process W(r) which is continuous) to a subspace
defined by the functions Z(2,1). Continuity of Pa{AJW(r) follows since a linear projection
map is bounded and continuous (see, €.g., Ash (1972), p. 130 and p. 148). o

1t is useful to illustrate this result by way of an example. Consider Model A where Z(3,
1) = (1, 1, du(), 1)). Note that
1 1/2 (1-3)

[laozns)ds = | 1/2 13 (1-3%)/2
(1-3) (1=39)/2 (1-3)

1 1 1/20
if A =0, [;2(05)2(0s) ds = 12 1/30|=A,
6 0 0
) 1 121
andif A = 1, [ (Z(15)Z(1,5)"ds = 12 1/3 1/2 | =B.
1 121
A and B are obviously nonsingular, but a common g-inverse is given by
1/3 -1/2 0
G=12-1/2 1 0}.
0 0 0
Since the choice of the g-inverse leaves a projection map unchanged, we have for A = 0,1:

PANW(r) = 2*0) [ ‘I)Z‘(S)Z*(s)'ds]"l [z &)W (s)ds

where Z+(r)* = (1, 1), in which case the limiting distribution of &()‘) (X = 0, 1) reduces to
that in the case where no dummy for structural change is included.

The proof for Model 3 follows similar arguments and is therefore omitted. It uses the
limiting distribution for fixed A derived in Perron and Vogelsang (1993a,b) (see also
Vogelsang (1993)).





















TABLE 4: Finite Sample Size and Power Simulations; Model 3,15(3).

DGP:y, = 9DT} +, ; §, = o,y + L‘?zlqﬁ(i)éit_i +(1 4+ YL)e,
€ ~idid. N(0,1); T = 100, Ty = 50 ; 2,000 replications; 5% nominal size; kmax = §5.

Size (a = 1.0) Power (a = 0.8)

7 7
k 0.0 0.1 0.3 0.5 10 0.0 0.1 0.3 0.5 1.0
(1) 6() = 0.0 (i=1,..,4), p= 0.0
0 049 .053 055 047 .036 358 .365 344 331 32!
1 .044 049 .048 042 037 287 .299 283 277 270
2 045 046 .048 041 .040 203 215 207 .199 .20
3 038 .039 042 .040 047 160 177 .189 163 1687
4 035 037 .039 .036 041 122 129 .134 130 134
5 .035 .035 .039 .038 .039 110 123 125 116 17
F-sig 050 054 .058 055 .050 235 .256 244 231 233
t-sig 049 .081 058 .050 .045 257 278 270 259 258
(2) 8(1) = 0.6, ¥ = ¢(i) = 0.0 (i=2,34)
0 .000 .000 000 000 .001 000 .000 000 .000 000
1 .058 .060 .056 .054 062 908 903 904 902 901
2 048 048 049 049 055 753 .758 761 753 756
3 .045 .046 .040 041 045 .586 592 .600 594 583
4 037 .040 .034 L0318 .044 405 426 424 417 417
5 033 .033 .034 037 045 .289 302 .306 .305 305
F-sig  .049 .081 047 047 054 676 679 679 .688 693
t-sig .049 047 038 046 .049 760 773 774 778 .785
(3) #(1) = ~0.6, ¥ = 4(i) = 0.0 (i=2,3,4) ’
0 .858 874 873 .858 .848 997 997 .998 .998 .998
1 051 .048 .043 .038 .034 131 132 17 114 113
2 046 .040 .040 .037 .034 090 100 .096 .094 .098
3 .044 045 041 037 038 084 .098 094 .099 088
4 034 .030 .033 .032 .033 .063 074 082 .U83 077
5 .033 035 .038 .037 .039 056 073 073 075 070
F—-sig 037 .040 .044 042 .044 .091 104 104 .104 160
t-sig 039 039 .042 034 037 090 105 .105 104 097
(4) 9(1) = 0.4, 6(2) = 0.2, ¥ = 9(3) = p{4) = 0.0
] .004 .004 .005 004 .004 001 .000 .000 .000 000
1 .009 .008 008 007 .006 432 439 428 421 424
2 .048 051 .050 .049 .048 .756 764 765 763 760
3 .040 042 047 044 .051 .598 611 611 .607 602
4 .038 .039 043 044 .046 413 432 438 436 421
5 .042 .043 040 040 050 .300 314 318 311 313
F-sig 040 D48 .049 047 050 .582 .593 .600 591 593

t-sig  .038 .040 .038 040 .044 .607 .625 626 .624 620
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TABLE 5: Finite Sample Size and Power Simulations; M.
DGP: v = 'yDT: +¥,i ¥

odel 3, BLS method.
=y + E?zyﬁ(i)éfft_i +(1+ yLe,
€~ iid. N(o, 1);T= 100, Ty, = 50 ; 2,000 replications; 5% nominal size; k = 4.

Size (a = 1.0) Power (a = 0.5)
7 7

0.0 0.1 0.3 0.5 1.0 0.0 0.1 0.3 0.5 1.0
(1) ¢(1) = 0.0 (i=1,..,4), ¥ = 0.0

073 .0n .089 131 320 .149 173 .205 292 .706
(2) (1) = 06, ¥ = (i) = 0.0 (i=2,3,4)

091 -090 .080 .091 126 452 .468 479 .494 650
(3) $(1) = 0.6, ¢ = ¢(i) = 0.0 (i=2,3,4)

087 .068 .093 190 .660 089 124 174 347 .899
(4) (1) = 04, §(2) = 0.2, Y= ¢(3) = ¢(4) = 0.0

.090 089 .082 .094 130 .445 470 .484 .801 .650
(5) 6(1) = .3, ¢(2) = .3, ¢(3) = .25, #(4) = .14, ¥ =00

168 173 .166 .169 172 910 817 919 .923 .922
(6) ¥= 0.5, 6(i) = 0.0 (i=1,..,4)

.068 .067 .074 .087 165 140 146 178 .188 421
(1) ¥=-04, 9() = 0.0 (i=1,..4)

072 075 111 ’ .208 690 .208 .239 .309 .551 874




TABLE 6: Empirical Results, Nelson - Plosser Data; t‘a(l), kmax = 10.

Regression: y, = # + DU, + pu+ D(Tw), + ey 3+ i=1°iAyt—i +e.

o

Series Sample T Tv Kk ty s p-value p-value p-value

(asy) (F-sig) (t-sig)

Real GNP 1909-1970 62 1928 9 -5.13 180 -593 <.01 <01

. 1928 8 -4.79 267 -5.50 <.01 .03
Nominal 1909-1970 62 1928 11 —£.34 404 -8.16 <.01 <.01
GNP s 1928 15 -5.94 497 -6.21 <.01 <.01
Real per 1909-1970 62 1928 9 -3.73 313 -4.81 .06 12
Capita GNP 1928 7 -3.31 .484 —4.51 13 21
Industrial 18601970 111 1928 8 -5.18 272 -6.01 <.01 <.01 <.01
Production
Employment 18901970 81 1928 8 -3.42 .586 -5.14 .02 05

1928 7 -3.11 .650 -4.91 .04 .09
GNP Deflator 1889-1970 82 1928 5 -3.28 .783 -4.14 .29 .35 .35
CP.L 1860-1970 111 1939 5 2.00 .948 -3.09 .88 .88 .88
‘Wages 1900-1970 71 1928 7 ~4.32 619 ~5.41 <.01 02

1929 9 —4.10 635 -4.62 .10 .16
Money Stock 18891970 82 1929 7 -2.80 783 -4.69 .08 .14

1927 6 -2.50 .831 -4.30 .21 .28
Velocity 1869-1970 102 1949 8 2.95 830 -2.81 .95 94

1946 0 3.24 858  -3.29 .81 .81
Interest Rate 1900-1970 71 1965 3 3.86 834 -135 >.99 >.99

1963 3 3.44 928 -1.35 >.99 >.99

a : For Nominal GNP, kmax = 15 (See footnote 3).




Table 7: Empirical Results; Nelson-Plogser Data Set; Model 1.

Regression: Z=n+ (?DU2 + 5 +6D(Tb)‘ tay, , + b

t:x,ﬁ(l); Choosing T, minimizing tz kmax = 10.

=lciAyt—i +e,.

Series Ty k ty & t. p-value  p-value p~value
(asy) (F-sig)  (t-sig)
Real GNP 1928 9 -5.13 190 -5.93 <.01 <.01
1928 8 ~4.79 267  -5.50 <.01 (02
Nominal GNPa 1929 11 _g73 231 -7.86 <.01 <.01
1928 15 ~5.94 497 -6.21 <.01 <.01
Real Per Capita 1928 9 ~3.73 313 481 .03 .06
GNP 1928 7 -3.31 484 451 07 .10
Industrial 1928 8 -5.18 272 -6.01 <.01 <.01 <.01
Production
Employment 1928 8 ~3.42 586 -5.14 .01 .02
1928 7 -3.11 650 -4.91 .02 .04
GNP Deflator 1919 5 ~3.51 886 -3.24 .58 .54
1919 9 -3.61 .829  -3.87 27 .28
C.P.IL 1919 5 -3.12 982  -1.16 .98 .98 .96
Wages 1929 7 —4.32 619 541 <.01 .01
192¢ 9 -4.10 635 -4.62 .05 .08
Money Stock 1929 T -2.80 783 .69 .04 .07
1928 ¢ ~2.63 824  -4.98 .12 15
Velocity 1880 5 ~2.74 928  -1.62 .96 .93
1880 0 ~2.46 897 -243 .87 .83
Interest Rate 1920 ¢ ~4.16 1.058 1.16 >.99 >.599
1918 ¢ -3.59 1.079 2.08 >.99 >.99

a: For Nominal GNP, kmax

= 15 (see footnote 3).
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TABLE 11: Empirical Results, Additional Series; t2(1), kmax

Regression: Yy=p+ DU +pt + dSD(’I‘;,)t

tay

i=1"1

= 12,

+ b c.AyH te.

Series Sample T T, ¥ tb & t. p-value p-value p-value
(asy)  (F-sig) (i-sig)

Real per 1909-1970 62 1928 11 474 202 -5.42 <.01 .03 .03
Capita GNP (FS)
M2 1869-1973 105 1926 12  -4.91 7200 -4.69 .08 13 .14
Nominal 1889-1973 85 1928 11 -6.00 B79 -6.78 <.01 <.01
Consumption

1928 12 -5.65 614 -5.70 <.01 .01
Real 1889-1973 85 1928 11 -5.96 202 -6.45 <.01 <.01
Consumption

1920 11 -5.78 109 -6.19 <.01 <.01
Nominal Per 1889-1973 85 1928 12 -5.12 613 -5.25 .02 .03 .03
Capita Cons.
Real Per 1889-1973 85 1928 12 414 74 449 13 .20
Capita
Consumption 1928 10 -3.69 871 4.54 12 .19
Consumption 1889-1973 85 1929 8 -3.77 709 471 .07 13
Price Index

1918 10 -3.86 810 4.34 19 .26
Population  1889-1973 85 1817 11 3.35 933 -4.82 .05 .10

1923 10 -1.94 948 -3.48 70 .71
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