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We investigate nanocomposites, that is, dispersions of magnetite nanoparticles in an epoxy resin, by means of broadband dielectric
and magnetic spectroscopy. The molecular dynamics of the polymer matrix is altered by the nanoparticles. Due to the formation
of agglomerates neither permittivity nor permeability can be described with known effective medium models. We use the spectral
representation (Bergman theorem) to show that a model-free evaluation of the low-frequency permeability of the nanoparticles
can be achieved by combining dielectric and magnetic data. In addition, the ferromagnetic resonance is studied experimentally. It
occurs near 3 GHz and is independent of the particle concentration.
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1. INTRODUCTION

Composite materials, consisting of magnetic nanoparticles
dispersed in a polymer matrix, offer the possibility to com-
bine the properties of their components. On the one hand,
the processability and mechanical quality of the matrix is an
advantage compared to ferrites. On the other hand, despite
a restricted particle concentration, a sufficiently high perme-
ability has to be achieved, especially in the high frequency
range around 1 GHz. For these reasons, such composites are
extensively studied, both experimentally and theoretically
[1-3]. Applications are possible in various areas (magnetic
sensors and transducers, electromagnetic impedance match-
ing, microwave heating, etc.).

A composite can be considered as a so-called effective
medium with homogeneous material properties (effective
permittivity e. and effective permeability y ) as long as the
wavelength of an applied electric field E and a magnetic field
H is large compared to the length scale of its structural in-
homogeneities, that is, large compared to particle diameters
and interparticle distances. Then the measured effective ma-
terial parameters are defined in terms of volume averaged
fields, (ecE(r)) = (e(r)E(r)) and {u.H(r)) = {(u(r)H(r)),
respectively. Here, the brackets denote the volume average,
(--+) = 1/V-[..dV, and &(r) and p(r) the local mate-
rial parameters. (This is a linear analysis where the electro-
magnetic response of the material does not depend on the

field strengths). Performing the average for each component,
these definitions read [4, 5]

(1 _f)8m<E>m +f€p<E>p
(1= fUE)m+ f(E),

(1)

Eeff =

(= o, (HY + fu (HD,
Hett = (1= ) (H)p + f(H),

where ( - - - ); denotes the volume average in matrix (i = m)
and particles (i = p) with corresponding material parame-
ters & and y;. f = V,/V is the volume filling factor of the
dispersed particles. The above equations illustrate two main
features.

(i) The effective material parameters do not depend only
on the properties of the components and their mixing ratio.
The microstructure, in our case, shape and size distribution
of particles as well as their spatial arrangement, directly influ-
ences the field distribution and thus e and p4. Therefore,
analytical exact mixture rules are only available for rather
simple geometries (for monodisperse arrays of spheres and
spheroids, see, e.g., [6-9]). But of course, computer simu-
lations of two and three dimensional systems allow calcu-
lation of the effective material parameters for various par-
ticle arrangements and shapes (see, e.g., [10-18]). For exam-
ple, Fu et al. have found an analytically exact solution in 3D
space, a complex set of equations, describing an arbitrary dis-
tribution of nontouching spheres [19]. For a given particle
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TaBLE 1: Properties of the components.
Component DER332 DETA Fe;O4
Producer DOW DOW Sigma-Aldrich
State (298.15K/343.15K) Crystalline/liquid Liquid Powder
Density (g/cm?) 1.16 0.9482 5.1

arrangement, this allows numerical calculation of the effec-
tive permittivity [20]. Such simulations of effective prop-
erties are helpful, but they do not resolve the problem of
how to analyze experimental data, when the microstructure
is not completely known, for example, due to a partial ag-
glomeration of particles. There is a multiplicity of approxi-
mate effective-medium formulas [21, 22], but in most cases,
the details of the underlying microstructure are not explic-
itly specified. Thus it is often not clear how to chose the one
that is appropriate for the system under study. Especially the
attempt to evaluate the properties of the dispersed compo-
nent is impossible or, at least, subject to big errors (note that
heterogeneity not only affects the absolute values of effective
permittivity but also influences the characteristic frequen-
cies of polarization processes [23] and of molecular relax-
ation dynamics [24], that are observable in dielectric spec-
troscopy).

(ii) For a given microstructure, the same formal relation-
ship holds for permittivity and permeability: (1) transforms
into (2), when E is replaced by H as well as ¢ by y. Since
the fields behave in an analogous way at the internal inter-
faces (the tangential components E; and H; are continuous
whereas for the normal components, ,E, , = &nE, ,» and
‘upHL,P = u,,H. ,m hold), the same mixture rules apply for
eeff and ph g

For the effective permittivity, there exists a so-called spec-
tral representation, that was developed by Bergman, Fuchs,
and Milton (for a review see [25]). They were able to sepa-
rate the influence of microstructure, characterized by a spec-
tral density function, from that of the components, charac-
terized by their permittivities [25]:

o
ep/em— 1

(3)

The constant C is the strength of percolation describing
the contribution of an infinite cluster. The spectral density
gr(n) = 0 characterizes the actual microstructure at a given
filling factor f (for a single particle n would correspond to
the depolarization factor; in a complex system of interacting
particles, it is a variable in the range 0 < n < 1). There are
two sum rules that determine the Oth and the 1st moment of
the function g¢(n):

1
se—ff:1+f{9+ &)
Em te ote+n

dn} with t, =

1
J gr(m)ydn =1-C, (4)
0
for all mixtures (i.e., g is normalized), and additionally,
1
1
[ ngsman =S ), (5)

for isotropic systems.! In the following, we restrict our-
selves to isotropic composites below the percolation thresh-
old (C = 0in (3) and (4)). Due to the above formal anal-
ogy between effective permittivity and permeability, the same
spectral density function also describes the magnetic proper-
ties of a composite:

1
@:l—i-f Mdm with t, = !

o 0oty +n 1 )

(#p/#m) -

Spectral representation does not provide a method for
determining gs(n) from first principles [25], and thus it does
not allow derivation of mixture formulas. But it can be very
helpful for the analysis of experimental data, even in cases
where the microstructure is unknown. For example, when
the measured effective properties vary considerably as a func-
tion of frequency, the spectral density gr can be evaluated
using model functions for the intrinsic material parameters
[28-30]. In the following, we are going to show that it is
possible to evaluate the material parameters of the dispersed
component as well as to detect and to quantify effects that
the effective medium theory does not predict (changes of
the components properties at interfaces, see below). Here,
we study a model system consisting of magnetic nanopar-
ticles (magnetite) dispersed in a polymer matrix. We have
measured permittivity and permeability for different particle
concentrations using dielectric spectroscopy in the frequency
range from 5 Hz to 1 GHz and magnetic measurements from
5MHz to 6 GHz.

2. EXPERIMENTAL
2.1. Samples

The composites studied are an epoxide system filled with
magnetic nanoparticles. This epoxide system is composed of
a resin, Diglycidylether of Bisphenol A (DER332, DOW Plas-
tics (Rheinmiinster, Germany)), and a hardener, Diethylen-
triamin (DETA, DOW Plastics (Rheinmiinster, Germany)).
The magnetic nanoparticles, which have a mean diameter be-
tween 20 and 30 nm, are magnetite (Fe3O4) purchased from
Sigma-Aldrich (Munich, Germany). The main characteris-
tics of the components are listed in Table 1.

! These lower moments are obtained via a series expansion of ecf/en
around &p/e, = 1, that is, considering the limiting case of a nearly ho-
mogeneous composite, where the electric field is uniform (for details, we
refer to [26, 27]).
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The sample preparation was done in two steps. At first, a
concentrated epoxide/nanoparticle masterbatch with a par-
ticle content of 14.1 vol% was produced at the IVW (Institut
fur Verbundwerkstoffe). Then this masterbatch was further
processed to obtain solid samples with different particle con-
centrations.

Nanoparticles in powders adhere to each other due to in-
teractive forces between the particles, resulting in nanopar-
ticle agglomerates with dimensions of several micrometers.
In order to obtain a material with good mechanical proper-
ties, it is necessary to disintegrate the agglomerates and to
distribute them homogeneously in the polymer matrix. In
this study, two working principles, traditionally used for lac-
quer processing (dissolver and bead mill) were combined in
one. After incorporating the powdery nanoparticles into the
liquid resin, the resulting mixture was homogenized by a dis-
solver aggregate (a dissolver provides high shear forces by the
rotation of a metal disc in the liquid mixture). Entrapped
air was removed by vacuum. Then the magnetite was fur-
ther dispersed using a torus mill. It applies high shear forces
to the mixture via a rotating metal disc while hard zirconia
beads with diameters between 1.2 and 1.7 mm move within
the mixture. These beads generate collision effects and shear
forces providing a grinding effect that further decreases the
size of nanoparticle agglomerates. The beads were removed
from the mixture after the dispersion process. The above pro-
cessing of nanocomposites was performed under controlled
conditions, that is, at constant energy input and constant
temperature. The chosen particle content of the masterbatch
(14.1vol%) is close to the processing limit. At higher concen-
trations, the system becomes too viscous, resulting in an un-
stable and discontinuous flow during processing. Then dis-
persing the nanoparticles and wetting them with polymer be-
comes more and more difficult, and processing may result in
a reduced homogeneity of the mixture.

In the next step, we have prepared solid samples with a
specific particle concentration: at first, both the initial mas-
terbatch and the pure resin were maintained for one hour un-
der vacuum in order to remove entrapped air. This was done
at a high temperature of 313.15 K to avoid crystallization and
to diminish the viscosity of the resin. Then the masterbatch
was diluted with pure resin whereas both components were
mixed for 30 minutes and evacuated for one hour. This mix-
ture was cured after adding the corresponding quantity of
DETA (mass ratio resin/hardener 100 : 14). In this last phase,
the material was mixed for five minutes, cooled down rapidly
to room temperature in order to slow down the polymeriza-
tion process, and evacuated for three minutes. The polymer-
ization took place in a mould at room temperature. After 48
hours, the post-cure was performed at 393 K during one hour
[31]. The resulting series of samples with varying nanoparti-
cle content from f = 2% to f = 10% are listed in Table 2.

2.2. Measurement techniques

We have used dielectric and magnetic spectroscopy to deter-
mine the complex permittivity ¢ = ¢’ — i’ and the magnetic
permeability y = ¢’ — ip” of our samples at room tempera-
ture.

TABLE 2: Volume filling factor and mass filling factor of the samples
studied.

Filling factor f (% vol) Filling factor X (% mass)
0 0

8.6

16.1

22.7

28.6

10 33.8

o N N

FIGUrE 1: Condenser cell as a part of a transmission line (dielectric
measurements). S: sample, CP: capacitor plates, IC/OC: inner/outer
conductor of the transmission line

The complex permittivity has been measured using a
broadband transmission method covering the frequency
range from 5 Hz to 1 GHz with one experimental setup [32].
The sample is placed between two circular capacitor plates
that are connected to the inner conductor of a coaxial trans-
mission line (see Figure 1). For this purpose, cylindrical discs
with a diameter of ® = 13 mm and a thickness d between
1 and 2 mm have been machined from the composite ma-
terial (using a turning lathe). From the measured transmis-
sion coefficient, the permittivity is calculated. The respec-
tive geometrical tolerances of sample diameter and thickness
(£20 ym) result in an uncertainty of Ayle| = Arel(D*/d) =
2% (for details, see [32]).

The complex permeability has been measured using an
impedance analyzer (Agilent HP 8424a) in the frequency
range from 5MHz up to 110 MHz and a network analyzer
(HP 8510B) between 110 MHz and 6 GHz. In both cases,
the sample is inserted at the short-circuited termination of
a calibrated coaxial transmission line (see Figure 2). For this
purpose, cylindrical samples with outer diameter ¢, = 7 mm
and inner diameter ¢, = 3.04 mm have been machined from
the original cured composite. At low frequencies, the ter-
mination impedance of the coaxial line is measured, Z =
R + iwL, with R being the resistance of the inner conduc-
tor and L = (u,/2m)uIn(@,/¢,)d being the inductance (¢, =
477-1077 H/m). Two measurements, with and without the
sample, are sufficient to determine the complex permeabil-

ity:

Zsample - Zempty

+1 (7)

“= iw(py/2m) In(p,/9)d

where w is the circular frequency and d is the thickness of
the sample [33]. The geometrical tolerances of inner and
outer sample diameters (£20 ym) result in an uncertainty of
Arel|¢u| =~ 2%.
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FIGURE 2: Measurement cell for the determination of the complex
permeability in the low frequency range (a) and in the high fre-
quency range (b) (impedance and reflection measurements, respec-
tively). S: sample, M: metal, ¢, /¢,: inner/outer diameter of the sam-
ple, d: thickness of the sample.

In the high frequency range, the reflection coefficient I’
is measured, which is directly connected to the measured
impedance Z = Zgmple O Z = Zempty and the impedance
of the cable, Z, = 50 Q:

VAN
rmeas = .
Z+ 7

S

(8)

3. DIELECTRIC MEASUREMENTS

At room temperature, that is, below the glass transition tem-
perature of the polymer matrix (Tg = 404K [34]), we have
performed dielectric measurements on the samples listed in
Table 2. Figure 3 shows real and imaginary parts of the ef-
fective permittivity as a function of frequency for different
filling factors. Already the pure matrix (f = 0%) shows a
relaxation process near 10°> Hz leading to a decrease of per-
mittivity from a low frequency value ¢ to a high frequency
value €. above 1 GHz (Figure 4). The peak in ¢” seems to
be an overlap of several processes. Local heterogeneity, for
example, can give rise to such a distribution of relaxation
times. The origin of this relaxation has to be clarified by
further temperature dependent measurements. With increas-
ing amount of nanoparticles, the process becomes more pro-
nounced. In order to quantify this, we have fitted the curves
with the empirical Havriliak-Negami model [35, 36]:

Eeff,s — Eeff,o0

Seff(w) = Eeffo T s
(1+ (iwr)“)ﬁ

)

with 7 being the relaxation time. An example is shown in
Figure 4. Although the fit does not reproduce the detailed
structure of the ¢”-peak, the overall agreement is good al-
lowing at least to satisfactorily describe the respective low
and high frequency limits of permittivity. The addition of
nanoparticles yields both an increase of ¢, as well as of the
relaxation strength, Agefr = €effs — Eeffo0 (s€€ Figures 3 and 4).
At first sight, this can be qualitatively related to the fact that
the magnetite particles are conductive. When an electric field
is applied, the particles become polarized, resulting in an en-
hanced permittivity compared to that of the pure matrix (in-
terfacial polarization process or Maxwell-Wagner-Sillars po-
larization). The measured spectra thus reflect the superposi-
tion of at least two processes: the intrinsic relaxation of the

Re (&eff)
w (o)) ~ [ele]

f:10%

f=8%

f=6%

44 f=4%

f=2%

5 f=0%
102 10> 10* 10° 10° 107 108 10°

Frequency (Hz)
(a)

g

&

i
f=10%
f=8%
f=6%
f=4%
f=2%
f=0%

102 10%  10* 100 10° 107 108 107

Frequency (Hz)
(b)

FIGURE 3: (a) Real and (b) imaginary parts of the dielectric func-
tion for an epoxy resin with Fe;O4-nanoparticles at various volume
filling factors.

polymer matrix and the polarization of the conductive parti-
cles. In the following, we will address two questions.

(i) Is the observed increase of permittivity only a sim-
ple polarization effect or do other processes, that effective
medium theory do not predict, contribute?

(ii) To what extend does the data reflect the microstruc-
ture of the composite?

The spectral representation (3) is a useful tool to address
the first question, even though the detailed microstructure is
unknown. We thus start our discussion with a two phase sys-
tem (matrix and particles) in the strict sense. Particles are ei-
ther perfectly connected or well separated, so that there is no
charge transfer. Additional interphases or contact resistances
between particles are excluded (but we will come back to this
point later).
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holds, that is, in the quasistatic limit
o
V<K = ,. 11
2megem an

Re (ecff)

102 10 100 10° 10° 107 108 10°
Frequency (Hz)

(a)

Im (ecfr)

f=10%

f=0%

102 10° 10 100 10° 107 108 107
Frequency (Hz)
(b)

FIGURE 4: (a) Real and (b) imaginary parts of permittivity versus
frequency for the pure polymer matrix as well as for a composite
with f = 10%. The thin lines correspond to (9). In (a), also some
fitted parameters are shown (dotted lines): low-frequency permit-
tivity e and high-frequency permittivity e .. The arrows indi-
cate the respective relaxation strength, Agefr = €efts — Eeff,co-

The generalized permittivity of conducting particles is
given by ¢, = & — io/(gw), so that the conductivity o
governs the dielectric response at low frequencies (gp =
8.854-107'2 F/m). When the nanoparticles are exposed to an
electric field, they become completely polarized, that is, the
average field strength inside is negligible compared to that
outside (for a single sphere in an homogeneous field, e.g.,
(EYp/(Em) = 3em/(ep + 2¢,,) holds). This is the case at low
frequencies when

&p
Em

~— > 1, (10)

The DC conductivity of bulk magnetite is of the order
of ¢ = 300S/m at room temperature, for thin films with
a thickness of 30nm, it is ¢ > 30S/m [37]. With a ma-
trix permittivity ¢, = 3 (see Figure 3), the above condi-
tion reads v < 10'! Hz. Obviously, this is the case in our
measurement range (up to 10° Hz). Then (3) becomes, with

[t] = lep/em — 1 <1,

1
Eeff gf(n)
— =14f-| 22—dn f <V,
. fjo ” n forv < v, (12)
\—(—J

=h(f)
where h( f) is a function having real values [h( f)eR]. Here,
we have assumed that no percolation occurs (C = 0). In fact,
our composites do not show a DC conductivity. Therefore,
eeft/em = h(f) = 1 holds. This ratio depends on the ac-
tual microstructure, and so it is a function of the filling fac-
tor f. But it is independent of €, and &,. As a consequence,
the values of h(f) do not depend on frequency and are real
numbers. This is a general result that reflects in all specific
mixture formulas. The Maxwell-Garnett formula, for exam-
ple, that describes a random distribution of monodisperse
spheres [19, 20], reads, in the quasistatic limit,
MG

sz—i = 11+_2f for v < vg, (13)
while the Hanai-Bruggeman formula, describing randomly
distributed spheres having a sufficiently broad size distribu-
tion [20], becomes

elf? _ 1

em (1 f)

We have calculated the ratio of the measured permittivi-
ties, e.f/€m, and displayed its absolute value in Figure 5. Ob-
viously, it depends on frequency in the range where the relax-
ation process of the matrix polymer is active (there also, the
imaginary part of /€, does not vanish). This means that
the observed increase of relaxation strength with filling fac-
tor (Figure 6) is not solely due to the polarization of the con-
ductive particles. Besides the two processes we have already
discussed, that is, the intrinsic relaxation of the polymer ma-
trix and the quasistatic polarization of the conductive parti-
cles, there is an additional mechanism, that is not taken into
account by effective medium theory. In order to quantify this
effect, we now evaluate how the effective relaxation strength
should change if there were no such additional mechanism,
that is, if (12) were valid. For the respective low and high
frequency values, it reads

Eeffs = h(f)"sm,”
Eeff,o0 = h(f)'sm,om

and thus with eefrs = Aéeff + eff,o aNd €y s = A&y + Emoo (s€E
Figure 4),

for v < vg. (14)

(15)

Aey,

Em,o0

Aseff(f) = seff,w(f)' (16)
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1.7
= 1.6 f=10%
2 151 f=8%
< 14 3
13 f=6% <
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102 10°  10* 10° 10 107 108 107 5
Frequency (Hz) 0 2 4 6 3 10

FIGURE 5: Absolute value of the ratio of effective permittivity over
matrix permittivity as a function of frequency for our compos-
ites (the curves were calculated from the measured complex values
shown in Figure 3). For each filling factor, effective medium theory
predicts a real and frequency-independent value (see (12)). Obvi-
ously, this is not the case in the range where the relaxation of the
matrix polymer is observed.

The above equation is independent of microstructure
and thus holds for all composite materials, provided effective
medium theory can be applied. In Figure 6, we compare the
measured values of Ae.g to those calculated using (16) (in-
serting the experimental data for Ae,,, €m0, and e (f))-
The experimental values are up to 38% higher (at f = 10%)
compared to what we may expect. Note that (3) and thus (12)
to (16) presuppose that there are only two phases and that
their properties remain unchanged when the components
are mixed. But obviously, this basic assumption of effective
medium theory is not fulfilled here. There are two possibili-
ties.

(i) According to (16), the measured relaxation strength
is proportional to the intrinsic one, Aeegr 0 Agy/€m 0. SO We
can understand the experimental result when we assume that
the dispersion of particles alters the molecular polarizability
of the polymer by enhancing the relaxation strength of the
matrix compared to that of the bulk polymer. In fact, replac-
ing, in (16),

Aew _ Bem (1 .34 (17)

Em, o0 Em, 0

allows us to describe satisfactorily well the experimental data.
Such a process is possible at the interfaces between particles
and the matrix, where the molecular interactions are altered
(and possibly interphases form). The smaller the particles,
the stronger the impact of the interfaces [38—40]. In this case,
the additional increase of relaxation strength should be pro-
portional to the surface area of the interfaces and thus pro-
portional to f, what we in fact do observe (see Figure 6). Fur-
ther experiments will show whether also the temperature de-
pendence of the relaxation time is affected by these altered
interactions.

(ii) Charge transfer between agglomerating particles, ei-
ther via contact resistances (corresponding to a third phase
in the mixture) or via a hopping process, can lead to an ad-

Filling factor (%Vol)

FIGURE 6: Relaxation strength Ae. as a function of volume filling
factor. Since the relaxation process is already observed at f = 0, it is
related to the molecular dynamics of the pure matrix. The theoret-
ical values have been calculated using (16) (inserting the measured
values eefoo (f), A&y and 00 ).

4.4 4
Empirical model
4.2 4
4 1 TAgglomerates
)/
3.8 1 .
- Hanai-Bruggeman
§ 367 Maxwell-Garnett
& v
3.4 4
3.2 4
3 -
2.8 1
2.6 T T T T T T
0 2 4 6 8 10

Filling factor (%Vol)

FiGure 7: High-frequency permittivity versus volume filling factor.
The solid lines correspond to the models of Maxwell-Garnett (13)
and Hanai-Bruggeman (14) as well as to (18) (see text).

ditional interfacial polarization process [23, 41]. The char-
acteristic frequency of such a process is proportional to the
conductivity of the polarized object. Attributing a conductiv-
ity 0,g < 0 to the agglomerates, it might be located in the
low frequency range and, just by chance, coincide with that
of the dipolar relaxation of the polymer matrix. We consider
this implausible, especially since the measured data in Fig-
ures 3(b) and 4(b) does not indicate the appearance of a new
distinct peak. But the form of the relaxation peak changes on
addition of nanoparticles, so that we cannot completely ex-
clude this hypothesis. But then the two mechanisms (dipolar
relaxation and agglomerate polarization) should have differ-
ent activation energies, so that future temperature dependent
measurements should allow us to separate the respective loss
peaks.

Now, let us focus on the high-frequency permittiv-
ity, €efie, which is shown as a function of filling factor
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135 - 10%
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FiGure 8: TEM-pictures of a sample with f = 2%. Note the differ- 10 100
ent magnifications. Frequency (MHz)

’w&‘ il

FiGUre 9: TEM-photo of a sample with f = 10%.

in Figure 7. &, increases with f. We compare the exper-
imental data with two models which apply for a statis-
tical spatial distribution of spheres in a continuous ma-
trix (matrix-inclusion topology or cermet topology). For
monodisperse systems below the percolation threshold, the
Maxwell-Garnett model applies, see (13), whereas the poly-
disperse limit (i.e., spheres with a sufficiently broad size dis-
tribution) is well described by the Hanai-Bruggeman model,
see (14). These formulas and their range of application have
been verified by 3D computer simulations based on an ana-
lytically exact solution [19, 20].

Obviously, both models predict permittivities that are
lower than those measured. This deviation is nonambiguous
since, in the quasistatic limit, the effective permittivity does
not depend on an unknown particle permittivity, &,. But we
can describe the experimental data fairly well by a modified
version of the Hanai-Bruggeman model, see (14), where the
exponent 3 is replaced by 4 (see Figure 7):

exp Sm,oo

Eeffo = W (18)

This is just an empirical description, but it will facilitate
the evaluation of the magnetic measurements (see below).

In order to find out to which extent the observed en-
hancement is related to the microstructure of our composite,
transmission electronic microscopy measurements have been
performed. In Figures 8 and 9, we show TEM-pictures of two
samples. Agglomerates are clearly observable, that is, there
is no random spatial distribution. This leads to a higher-
effective permittivity compared to simple effective-medium

FIGURE 10: Real part of permeability versus frequency for samples
with different volume filling factors. The imaginary part vanishes
within the resolution of the measurement method.

models [23]. Of course, we cannot exclude that there is an
additional effect, for example, an enhancement of the matrix
permittivity, &,,., due to altered interactions at the interfaces
between matrix and nanoparticles, similar to what we have
discussed above.

4. MAGNETIC MEASUREMENTS

Now, let us see what kind of information we can get from
the magnetic measurements. These have been performed for
the samples listed in Table 2. At low frequencies from 5 to
110 MHz, no losses can be observed (y " = 0), so that we
only display the real part of the effective permeability as a
function of the frequency in Figure 10. The permeability in-
creases by adding nanoparticles to our nonmagnetic matrix
(see also Figure 12).

As already stated in the introduction, in the framework
of effective medium theory, magnetic permeability is treated
in the same way as permittivity, so that we can replace € by
p in all formulas. But compared to the analysis of dielectric
data, there are two differences in the discussion of magnetic
measurements.

(i) We consider a nonmagnetic matrix, y,, = 1, and this
property cannot change due to interface effects in the com-
posite. This facilitates the analysis of the data.

(ii) The effective permeability will now depend not only
on the microstructure, but also on the permeability of the
dispersed particles, y,. Thus ¢ = F(p,p,,, f) holds with
an unknown function F. In addition, y , may differ from the
bulk value and thus it is unknown as well. This makes an
analysis more complicated.

So the question arises whether it is possible to determine
u,, although we do not dispose a priori of an analytical effec-
tive medium formula that is appropriate for the microstruc-
ture of our samples. For example, when we fit our data in
Figure 10 using the Hanai-Bruggeman formula,

(=) (5) —a-n 09
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we obtain a value of 4, =~ 40 (see Figure 11). But remember
that both the dielectric measurements and the TEM-pictures
have shown that the particles are not randomly dispersed.
Similar to what we have observed in the dielectric case, the
formation of agglomerates partly contributes to the observed
increase of effective permeability. This can be understood in
terms of an enhanced particle interaction: in random sys-
tems, higher-multipole moments can be neglected [20], but
they gain in importance in agglomerates. Therefore, the ob-
tained value can only be considered as an upper limit, that is,
we can expect p, < 40. At first sight, it seems to be impossi-
ble to get a reliable value for ¢, without further information
about the microstructure and an appropriate model to de-
scribe it. But in the following, we are going to show that the
dielectric measurements described above give us all the struc-
tural information we need to evaluate the particle perme-
ability. Instead of relying on approximate effective medium
formulas, we can use the spectral representation, that is, an
analytically exact formulation.

Although the spectral density, gr(n), is unknown, we
have four sources of integral information to solve the prob-
lem: the two sum rules, (4) and (5), as well as the dielec-
tric measurements in the quasistatic limit (Figure 7) and
magnetic low frequency measurements (below 110 MHz, see
Figure 12). Equations (6) and (12) relate the experimental
data to the properties of the components and the spectral
density. Using these and the above definition of the quasisatic
dielectric limit, h(f) = lim|;,| -« (€cfi/€m), we obtain

80 ] 520 )

ot-H’l

I
J & (n) —_dn.
n+t,
(20)
A Taylor expansion at n = 1 of the 2nd factor in the integral
yields

4 t t
et -+ ——5-(n-1)°
n+t, 1+i’[4 (1+tﬂ) (1+ty)
ty
-t -1+
(1+1,)"
21

Inserting this result into (20) and performing the integration
(using the sum rules (4) and (5) with C = 0), we obtain

nueff(f)
o
=K = ) =) - Uj”t)z-[(hm—l)—f]
u
_tiﬂ. 1) _5/3.f _ 1/3. f2
oty [(n(f)—1) =53 f —1/3-£2] +

(22)

The known limiting cases are easily checked; for y,/u,, = 1,
that is, t, = oo, we obtain y¢/u,, = 1. For yp/ymaoo, that is,

t,—0, we get once again the quasistatic limit p q/p,, —h(f).
It can be easily shown that the next higher term of order
t/(1+ tﬂ)4 in (22) contributes at maximum 1% of h(f) and
thus it can be neglected. The implications of the above re-
sult, that has been obtained using spectral density analysis,
are obvious.

Equation (22) allows us to evaluate ¢, and thus the par-
ticle permeability 4. The only quantities we need to know
are the effective permeability as well as the quasistatic dielec-
tric limit, h(f) = lim‘sppoo(seff/em). One possibility would
be to insert the measured values and to solve (22) for #, at
the respective concentration f. But there is a better way that
helps to minimize the influence of statistical measurement
errors as well as that of structural variations or of concentra-
tion fluctuations (remember that different samples are used
to determine e and p 4): when the particle concentration
has been varied it is advantageous to use a simple fit function
to describe the measured dielectric data. From our dielectric
measurements, we know that h(f) =~ 1/(1 - f)4 holds ((18)
and Figure 7). Inserting this function in (22), we can directly
calculate the effective permeability p (f) for different val-
ues of y,. In Figure 12, we compare this calculation with the
measured low-frequency permeability. Obviously, the mag-
netite nanoparticles exhibit a permeability of

p,=7+1 (23)

The advantage of the above evaluation procedure consists in
the fact that (22) holds for an arbitrary microstructure. The
only prerequisite is that the dispersed particles are conduc-
tive. In this case, a combination of dielectric and magnetic
measurements enables us to determine the permeability of
the dispersed particles without using any effective medium
model!

At high frequencies from 110 MHz to 6 GHz, we have
performed reflection measurements. The effective perme-
ability is shown as a function of the frequency in Figure 13.
Near 3 GHz, a ferromagnetic resonance can be observed.
The strength of this process increases with the addition of
nanoparticles, but the resonance frequency seems not to de-
pend on the particle concentration. That is what also the-
oretical models predict for single-domain particles with an
isotropic distribution of magnetic orientations [42]. So the
situation is quite different from what is known for dielec-
tric relaxation in dispersed particles, where the phase shift
of the electric field at the interfaces induces a shift of the
measurable effective relaxation frequency compared to that
of the intrinsic relaxation [24]: when a complex relaxation
function, €,(v), is inserted into (1) or (3), the position of
the effective loss peak is shifted to higher frequencies (an ef-
fect that depends on filling factor and microstructure). But
note that, in the present case of ferromagnetic resonance,
effective medium theory does not apply in its scalar form,
even though the effective permeability of single-domain par-
ticles with an isotropic distribution of magnetic orientations
is a scalar quantity [42]; close to the resonance frequency,
the particle permeability is a tensor, the nondiagonal com-
ponents of which do not vanish. This makes the calculation
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FiGure 11: Effective permeability as a function of volume fill-
ing factor f. Symbols: experimental data (plateau values from
Figure 10, i.e., at frequencies below 110 MHz). The solid line cor-
responds to the Hanai-Bruggeman formula, see (19), with y, = 40
and u,, = 1. However, the dielectric data of Figure 7 shows that this
model is not appropriate.

Hp =
1.5

1.45 A
1.4
1.35 4
1.3 1
1.25 4

=
-
([Tl
[ NN

==
ja~Ja~)

Ueff

1.05

0.95 T T T T T T
0 0.02 0.04 0.06 0.08 0.1

Filling factor

Figure 12: Effective permeability as a function of volume filling
factor f. Symbols: experimental data (plateau values from Figure 10,
i.e., at frequencies below 110 MHz). The solid lines correspond to
(22) with p,, = 1 and the specified values of y -

of y . much more complicated and simple effective medium
formulas should be handled with care.

5. CONCLUSION

We have prepared magnetic nanocomposites and we charac-
terized them using broadband dielectric and magnetic spec-
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FIGURE 13: (a) Measured real and imaginary part of permeability as
a function of frequency for a sample with f = 10%. (b) Measured
imaginary part of permeability for samples with various filling fac-
tors. Near 3 GHz, the ferromagnetic resonance is observed.

troscopy. The dispersed particles (magnetite) are conductive,
so that the dielectric data corresponds to the quasistatic limit
of completely polarized particles. This leads to an enhance-
ment of permittivity that is higher than what can be expected
for a spatial random distribution of particles. In fact, TEM-
pictures show the presence of particle agglomerates. More-
over, the addition of nanoparticles alters the molecular dy-
namics of the matrix polymer at low frequencies. This effect
is due to the modified interactions at the interfaces between
particles and the matrix. The measured effective permeability
depends both on the microstructure and on the permeabil-
ity of the nanoparticles, y - We have proposed a model-free
procedure, that allows us to evaluate y, without using effec-
tive medium formulas. It applies for an arbitrary and possi-
bly unknown microstructure and consists of combining di-
electric and magnetic data using the spectral representation.
In this way, we have determined a value of 1, = 7 + 1 for the
permeability of the dispersed magnetite. At high frequencies,
the ferromagnetic resonance of the nanoparticles is observed.
It is independent of particle concentration and occurs near
3 GHz.
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