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We have performed 3D simulations of complex effective permittivity and permeability for random binary mixtures of cubic parti-
cles below the percolation threshold. We compare two topological classes that correspond to different spatial particle arrangements:
cermet topology and aggregate topology. At a low filling factor of f = 10%, where most particles are surrounded by matrix mate-
rial, the respective effective material parameters are indistinguishable. At higher concentrations, a systematic difference emerges:
cermet topology is characterized by lower effective permittivity and permeability values. A distinction between topological classes
might thus be a useful concept for the analysis of real systems, especially in cases where no exact effective-medium model is avail-
able.
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1. INTRODUCTION

Composite materials have a lot of technical applications, and
especially magnetic nanocomposites have been studied re-
cently [1–3]. The fundamental question is how the proper-
ties of their components and their microstructure contribute
to the effective properties of the new material. Besides a mul-
tiplicity of approximative mixture formulas, there are some
analytical solutions of the so-called effective-medium prob-
lem (see, e.g., [4–8]). Also 2D and 3D computer simulations
allow to predict the effective material parameters for various
particle arrangements and shape (see, e.g., [9–17]). The in-
herent structure-dependence is beyond controversy and in
the strict sense every microstructure can give rise to a dif-
ferent mixture rule. Therefore, the analysis of nanocompos-
ites, for example, of nanoparticles dispersed in a host ma-
terial, represents a challenge: due to the difficulty to control
a spatial particle arrangement on a nm scale, the exact mi-
crostructure is often unknown. Nevertheless, we are still in-
terested either in predicting the properties of the composite
or in studying the dispersed nanoparticles that do not neces-
sarily behave like bulk material (the latter case represents the
so-called inverse problem, where measured effective quanti-
ties are used to evaluate the properties of a component). For
both cases, at least approximative procedures are required. In
view of this fact, we raise a fundamental question regarding

the concept of topological classes. More precisely, we want to
find out to what extend it is useful to distinguish between two
topological classes.

In the following, we consider composite materials con-
sisting of 2 phases that we call “matrix” and “particles” (in-
dices “m” and “p”). In order to attribute an effective per-
mittivity and an effective permeability to these mixtures, the
structural inhomogeneities have to be sufficiently small com-
pared to the wavelength of an applied electromagnetic field.
According to their definition as volume averaged quantities
[18, 19], the effective material parameters are independent
of the size of the inclusions, but depend on the volume filling
factor of the particles f = Vp/Vtotal as well as on the proper-
ties of the two components,

εeff

εm
= F

(
f ,

εp
εm

)
, (1)

whereas the function F depends on the microstructure. The
same holds for the magnetic permeability, presupposed that
the field excitation is unchanged (consider, e.g., a sample in
a homogeneous electric or magnetic field):

μeff

μm
= F

(
f ,

μp

μm

)
. (2)

According to a formalism developed by Bergman, Fuchs,
and Milton, it is even possible to separate the influence of



2 Journal of Nanomaterials

microstructure, characterized by a spectral density function
g, from that of the components, characterized by their mate-
rial parameters [20]: the effective permittivity can be written
as

εeff

εm
= 1 + f

{
C

t
+
∫ 1

0

g f (n)

t + n
dn
}

(3)

with t = 1/(εp/εm − 1) and C being the strength of per-
colation describing the contribution of infinite clusters. Al-
though there is no method to determine g f (n) from first
principles, the theoretical consequences are quite clear: every
new microstructure requires a new calculation of the effective
properties. The implications for the analysis of real systems
are not so explicit. Do experimental physicists need a differ-
ent mixture formula for every real sample system? And how
should they select one when no detailed information about
the microstructure is available? In such cases, where it is im-
possible to choose an “exact” model, topological criteria are
applied to find the best approximation for the system under
study.

Generally, two topological classes are considered in the
description of binary composite materials [18]. On the one
hand the so-called matrix inclusion topology (cermet topol-
ogy, separated grain structure), where a discontinuous phase
(e.g., particles below the percolation threshold fc) is dis-
persed in a continuous host matrix, all regions of which are
perfectly interconnected (e.g., a polymer or a liquid, see Fig-
ures 1(a) or 3(a)). Here matrix and filler are not topologically
equivalent. For example, an exact analytical solution for an
arbitrary spatial configuration of well-separated spheres has
been formulated in [6]. Based on this, 3D computer simu-
lations were performed [21] showing that two of the well-
known effective medium formulas for randomly dispersed
particles describe the limits of very narrow and very broad
particle-size distributions (see Figure 2): for monodisperse
spheres Maxwell-Garnet formula holds:

εeff = εm ·
(

1 + f · εp − εm
εm + (1− f ) · 1/3 · (εp − εm

)
)

, (4)

while for polydisperse systems with a sufficiently broad size-
distribution the Hanai-Bruggeman formula applies:

(
εeff − εp
εm − εp

)
·
(
εm
εeff

)1/3

= (1− f ). (5)

The latter is often successfully applied to describe exper-
imental data, since most real systems are polydisperse (see,
e.g., [22]). But of course, depending on the degree of ag-
glomeration, real systems can show more complicated non-
random spatial arrangements so that the above mixture rules
are no longer valid (see, e.g., [23]).

On the other hand, there is the so-called aggregate topol-
ogy, where both phases are topologically equivalent (see Fig-
ures 1(b) or 3(b)). This equivalence reflects in the symmetry
of the corresponding mixture formula: interchanging both
phases, εp ↔ εm and f ↔ (1 − f ), does not affect the result:
εeff (εp, εm, f ) = εeff (εm, εp, 1− f ). An example is, for example,

(a) (b)

Figure 1: (a) Matrix inclusion topology (cermet topology, sepa-
rated grain structure) describing discrete particles that are dispersed
in a continuous host phase. (b) Aggregate topology, where two
topologically equivalent phases are mixed (compact powders con-
sisting of two types of particles, polymer mixtures, interpenetrating
network structures, etc.) For an idealized system, see Figure 3.
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Figure 2: Effective permittivity versus volume filling factor for a
binary mixture with εp = 20 and εm = 1: examples for matrix
inclusion topology (model of Maxwell-Garnett, (4), and Hanai-
Bruggeman, (5)) and aggregate topology (model of Looyenga, (6)).

the formula of Landau, Lifshitz, and Looyenga (see Figure 2)

ε1/3
eff = f ε1/3

eff + (1− f )ε1/3
m . (6)

The aggregate topology is, for example, appropriate for
compact powders, heterogeneous polymer mixtures, and in-
terpenetrating network structures [19]. In a range of filling
factors, where both phases are above their percolation thresh-
old, they exhibit a high degree of interconnection and form
some kind of interwoven network. In this case, even particles
in a continuous host phase can be approximated fairly well by
the aggregate topology. For example, in a recent study, exper-
imental data for granular material (pulverized samples, i.e.,
air-particle mixtures) was compared with 6 effective media
formulas, 3 of them belonging to the cermet topology, and 3
to the aggregate topology, and the above Looyenga-equation
performed best [24]. In Figure 2, we compare the above mix-
ture formulas. The model of Looyenga yields higher effective
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values, but it is not clear whether this is a fundamental fea-
ture of the aggregate topology: there is a multiplicity of ap-
proximative formulas for both topologies [25, 26], the re-
spective range of validity is sometimes difficult to assess, and
we have just made an arbitrary choice of 3 models.

Summarizing, there is some experimental evidence that
depending on the concentration range, a topological dis-
crimination might be a useful concept: above the percola-
tion threshold formulas of the “aggregate type” perform well,
while below this threshold formulas of the “cermet type” can
yield good approximations (at least for systems of well sepa-
rated particles). But it is difficult to asses whether this differ-
ence is of fundamental nature and whether it persists when
we compare nonpercolating systems with an identical parti-
cle concentration.

In this article, we thus want to shed some light on the
difference between both topologies. We focus on composite
materials at filling factors below the percolation threshold,
where in both cases the dispersed phase does not form a con-
tinuous network. For this purpose, we have performed com-
puter simulations of 3D systems containing dispersed cubic
particles as sketched in Figure 3. With monodisperse parti-
cles of this shape, it is possible to realize both topologies just
by varying their spatial arrangement. For a given concentra-
tion, the respective microstructures look rather similar (and
they would be hardly distinguishable without indicating the
cubic grid in the sketch of the aggregate topology): there are
just particles in a matrix. We would like to know whether,
despite this similarity, the effective properties differ consid-
erably. Only in this case the concept of topological classes
might help to discriminate between effective medium mod-
els and to select the best approximation for the analysis of
experimental data.

2. SIMULATION

2.1. Method

Filling a resonator with a material leads to a change of its
complex resonance frequency, an effect that can be used to
determine the effective material parameters of a composite:

ν = ν0√
(εμ)eff

, (7)

with ν0 being the resonance frequency of the empty resonator
and ν that of the material-filled resonator (these are complex
frequencies, whereas the imaginary part reflects losses [27]).
The simulation is based on the discretization of the Maxwell
laws in such a resonator with dimensions LX∗LY∗LZ. Res-
onator and field distribution of the fundamental mode are
sketched in Figure 4. The simulation code was developed by
Stölze and Leinders [9–11], who used it to simulate an ag-
gregate topology. It allows to calculate the complex effective
permittivity εeff and permeability μeff of a 3D binary mixture
in the following way.

The resonator is filled randomly with N cubes of side
length a [N = (LX/a) ∗ (LY/a) ∗ (LZ/a)], either particles
or matrix material, according to the respective volume frac-
tion (see Figure 5). Such an inhomogeneous filling leads to a

(a) (b)

Figure 3: Sketch of an isotropic composite material containing
randomly dispersed cubic particles: (a) Matrix inclusion topology,
where the particle positions are arbitrary (only particle overlap is
excluded). (b) Aggregate topology, where the particles are randomly
dispersed on a cubic grid (a random mixture of cubes of material
“p” and “m”).

E

B

LZ

LY

LX

Figure 4: Distribution of electric and magnetic fields inside a res-
onator of size LX ∗ LY ∗ LZ (for an empty resonator in the fun-
damental mode). When the resonator is filled with cubes of matrix
material or particles, this leads to local changes of the field distribu-
tion and to a change of resonance frequency.

local pertubation of the fields compared to the well-known
analytical solution for an homogeneous filling. The local dis-
tribution of electric and magnetic fields in the resonator
is calculated following an approach developed by Weiland
(see [9–11]). As displayed in Figure 6, a tripod of electric
field is assigned at the edges of each cube forming the cu-
bic grid G. A reciprocal grid G∗, shifted by a half diagonal
from the first grid G, contains the magnetic field vectors so
that they penetrate the surfaces of the cube. The discreti-
sation of the Maxwell equations on these grids leads to an
eigenvalue equation that is solved via an algorithm developed
by Stölze (for more information we refer to [9–11]). So the
field vectors as well as the complex resonance frequency are
determined. The latter information allows us to calculate the
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Figure 5: Spatial distribution of the particles for a filling factor of
0.56% (size of the resonator: 120a∗ 90a∗ 120a). Different random
distributions yield the same effective permittivities or permeabili-
ties within a maximum deviation of 0.5%.
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Figure 6: Representation of field vectors inside the resonator. The
electric field is calculated along the first grid G (of side length a), the
magnetic field along the reciprocal grid G∗ which is shifted by half
a cube diagonal from the first grid.

product (εμ)eff from the complex resonance frequencies of
the empty and the filled resonator according to (7).

In order to obtain εeff and μeff separately, two simulation
runs are necessary. In the first one, a nonmagnetic system
(μp = μm = 1) is considered yielding εeff . In the second run,
μeff is evaluated for a purely magnetic material (εp = εm = 1).
In Figure 7, we show that the product of these values, εeff ·
μeff , equals the value of (εμ)eff that results from a single run
(where μp �= 1 and εp �= 1). Two final remarks are necessary.

(i) Since effective permeability and permeability are a
function of εp/εm and μp/μm, we can set εm = μm = 1
in all simulations without loss of generality (see (1)
and (2)). A high contrast between matrix and par-
ticles results in higher effective material parameters,
so that structure-induced changes can be monitored
more easily. In the following, we therefore choose par-
ticle parameters |εp| � 1 or |μp| � 1.
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Figure 7: Real (a) and imaginary (b) parts of the product of per-
mittivity and permeability for a binary mixture simulated in two
different ways. Filled cubes: (ε · μ)eff resulting from one simulation
run with εp = 10 − 4i, εm = 1, μp = 4 − 3i, and μm = 1. Open
triangles: εeff · μeff calculated from two simulation runs, a dielectric
one (εp = 10 − 4i, εm = μp = μm = 1 yielding εeff ) and a mag-
netic one (μp = 4− 3i, μm = εp = εm = 1 yielding μeff ). Obviously,
(ε · μ)eff = εeff · μeff holds.

(ii) Due to the resonator geometry, the effective permittiv-
ity is evaluated for an electric field parallel to a symme-
try axis of the cubic grid (E ‖ y, see Figure 4), while
the circumferential magnetic field yields a different
volume average. For this reason, different functions F
describe the magnetic and dielectric responses (see (1)
and (2) as well as [11]).
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Figure 8: Testing for size effects by varying the resonators dimensions with respect to the particle size (aggregate topology).

In this work, we have used the original code of Stölzle
and Leinders, that the authors kindly put at our disposal
(we made only some minor technical modifications). Imple-
mented on a modern personal computer (64- bit processor,
2.2 GHz, 4 GB RAM), it allows to simulate much bigger sys-
tems than those shown in the original work (having a size of
40a × 30a × 40a [9–11]). We are now able to simulate sys-
tems up to a size of 120a × 90a × 120a in a reasonable time
[28]), that is, on average it takes several hours to calculate an
effective permittivity or permeability (the evaluation of per-
meability requires less CPU time). As a consequence, we can
study more complex systems and we are no longer restricted
to the pure aggregate topology, as we shall show in the fol-
lowing.

2.2. Numerical test for size effects

A freely propagating wave exhibits a constant frequency, but
the wavelength depends on the dielectric and magnetic prop-
erties of the medium. In a resonator, the situation is differ-
ent. The wavelength is fixed and the resonance frequency
changes depending on the filler medium (7). Here we con-
sider the fundamental mode of a rectangular waveguide res-
onator with LX = LZ, so that λ/2 = LX holds (see Figure 4).
As long as the structural inhomogeneities are small com-
pared to the wavelength, the effective material parameters of
a composite depend on the microstructure but not on the
absolute size d of the inclusions (1)–(3). In addition, the dis-
cretization of the resonator, that is, the grid size a, has to be
sufficiently fine in order to assure a precise calculation of field
distribution and resonance frequency. Therefore,

2 · LX = λres � d, a (8)

has to hold in order to guarantee that the effective parame-
ters are well defined and to exclude finite size effects of the
simulation.

We check this for the aggregate topology and we start
with a situation where particle dimension and grid size are
identical quantities, a = d. For this purpose, we keep d = a
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Figure 9: Variation of the absolute value of permeability as a func-
tion of system size or wavelength, Lx/d = λ/(2d) for different
filling factors 0 ≤ f ≤ 1 (aggregate topology with d = a, see
Figure 8). The respective effective permeability of the largest sys-
tem, LX ∗LY ∗LZ = 120a∗90a∗120a, is taken as reference value
(simulation parameters: μp = 20− 12i, μm = 1, εp = εm = 1).

constant and change the size of the resonator and thus the
wavelength as indicated in Figure 8. We start with a maxi-
mum resonator size of LX ∗ LY ∗ LZ = 120a ∗ 90a ∗ 120a
and simulate the effective permeability of a binary mixture
(μp = 20 − 12i, μm = 1, εp = εm = 1). This value is taken as
a reference value. Then we repeat the same procedure for a
two-time smaller resonator (60a∗ 45a∗ 60a), a three-times
smaller resonator, and so on. In Figure 9, we display the rela-
tive deviation of the effective permeability as a function of the
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Figure 10: Testing for finite size effects by varying the ratio of par-
ticle size over grid size, d/a, while the size of the resonator is kept
constant (aggregate topology). According to Figure 9 and (9) the
finest discretization that can be realized corresponds to d = 6 · a.
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Figure 11: Variation of the absolute value of permeability as a
function of the ratio of particle size to grid size for an aggregate
topology (see Figure 10). The system size is approximately constant,
LX ·LY ·LZ � 120a·90a·120a. d/a = 1 corresponds to a coarse and
d/a = 6 to a fine discretization of the particles (simulation param-
eters: μp = 20 − 12i, μm = 1, εp = εm = 1). The lines are a guide to
the eyes (fit functions of the form |μeff | = α+β·exp(−γ ·d/a) ). For
d/a ≥ 4, the discretization is sufficiently fine so that the calculated
effective permeability reaches a saturation value.

relative resonator dimension Lx/d for filling factors between
0 and 1. The largest deviations (up to 2%) occur for small
systems or big particles. Therefore, the permeability does not
depend on the particle size (or at least only in a marginal
way) as long as

LX

d
= λres

2d
≥ 20 (9)

holds.
In the next step, we have to adjust the grid size a with

respect to the particle size d in order to make sure that the
electromagnetic fields inside the particles are calculated with

adad

d/a = 4 d/a = 6

=̂

Figure 12: In order to monitor a topological transition from aggre-
gate to cermet topology, random binary mixtures at constant vol-
ume filling factor but with different spatial particle arrangement
are compared. Upper row: aggregate topology for increasing ratio
of particle size d to grid size a. Lower row: intermediate topologies,
where the same particles are arbitrarily dispersed on the grid. The
limit a/d → 0 corresponds to the cermet topology, where the parti-
cles can be located everywhere in 3D space.

a sufficiently high accuracy. For this purpose, we now keep
the resonator approximately constant (LX ∗ LY ∗ LZ �
120a · 90a · 120a) and vary the ratio d/a as indicated in
Figure 10. While the electromagnetic fields are calculated on
a fine grid of size a (about 1.3 · 106 cubic cells of size a3),
the particles are randomly distributed on a coarse grid of size
d = n · a, so that we always maintain the aggregate topol-
ogy. We do this from d/a = 1 up to the finest discretization
d/a = 6. This upper limit corresponds to the largest particle
size that still fulfills (9). The high number of cells of size d3

filled with material m or p guarantees a good statistics for the
simulation of a random mixture. For example, at d/a = 4,
we have more than 20 000 material cubes, at d/a = 6 still
more than 8200. The results of the respective simulations are
displayed in Figure 11. For low ratios of d/a, there is a sys-
tematic decrease of the effective permeability. For

d ≥ 4a, (10)

the discretization is sufficiently fine and the calculated per-
meability values approach a saturation value (from d/a = 5
to d/a = 6 they change by less than 2% for f = 0.2 and
f = 0.3, while there is no change for f = 0.1). Summariz-
ing, we are able to simulate particles with side lengths from
d = 4a up to d = 6a without the appearance of any finite
size effect and with a precision of the order of 2% (includ-
ing systematic errors and repeatability of different random
distributions).
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Figure 13: Absolute value of effective permeability vs ratio d/a for
different volume filling factors. Filled cubes: aggregate topology.
Open circles: intermediate topologies as sketched in Figure 12. Sim-
ulation parameters: μp = 20 − i · 12, μm = εp = εm = 1. The lines
are a guide to the eyes. The arrows indicate the relative differences
at d/a = 6.

3. SIMULATING A TRANSITION FROM
AGGREGATE TO CERMET TOPOLOGY

Until now we have only studied the aggregate topology, simu-
lating random binary mixtures as shown in the upper row of
Figure 12. We can realize this type of microstructure for dif-
ferent ratios of particle size d to grid size a whereas the effec-
tive properties remain unchanged. This was simply achieved
by assigning only particle positions on a coarse grid of size
d = n · a. Now we can lift this restriction so that we ob-
tain new spatial arrangements as sketched in the lower row
of Figure 12. Cubic particles of side length d = n · a are ran-
domly distributed in a grid of size a. With increasing ratio
of d/a, the distance between two particles can become arbi-
trary small in comparison with their size. The limit a/d → 0
corresponds to the cermet topology sketched in Figure 3(b).
Compared to the particle size d, the grid is so fine that the
matrix can be considered as a continuous phase hosting the
dispersed discrete particles.

The topological transition can thus be monitored as fol-
lows. We keep the volume filling factor f constant and for
each ratio d/a, we compare the effective material parameters
of the aggregate and of the respective intermediate topology
(upper and lower rows in Figure 12). We do this for d/a ≥ 4,
where finite size effects are sufficiently small. With increasing
ratio d/a, the aggregate topology remains unchanged while
the intermediate topologies approach the cermet topology.

We start with a binary mixture containing magnetic par-
ticles with losses. As before we set μp = 20 − i · 12 and
μm = εp = εm = 1. Figure 13 displays the absolute value
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Figure 14: Effective permittivity versus ratio d/a for different vol-
ume filling factors. Filled cubes: aggregate topology. Open circles:
intermediate topologies as sketched in Figure 12. Simulation pa-
rameters: εp = 10, εm = μp = μm = 1. The lines are a guide to
the eyes. The arrows indicate the relative differences at d/a = 6.

of the effective permeability as a function of d/a for particle
concentrations from 10% to 30%, that is, below the percola-
tion threshold. The aggregate topology shows the plateau val-
ues already presented in Figure 11. The behaviour of the in-
termediate topologies depends on the particle concentration:
at low filling factor of f = 10%, the results equal those for the
aggregate topology (within the accuracy of the simulation).
At higher concentrations systematic deviations are observed.
The effective permeability values are lower by about 5% at
f = 20% and by 6.5% at f = 30%. Since there is only a
weak dependency on d/a at f = 10% and f = 20%, the sim-
ulated values can be taken as a good approximation of the
cermet topology. At f = 30%, however, |μeff | does not attain
a plateau value, so that we can expect even smaller values for
the limiting case of the cermet topology.

Next let us check how loss-free particles behave. This
time we choose a purely dielectric system with εp = 10 and
set εm = μp = μm = 1. The effective permittivity is dis-
played in Figure 14. Once again, the aggregate topology ex-
hibits higher effective material parameters, while the devia-
tion increases with increasing particle concentration: there is
no difference at the lowest concentration, but for f = 20%
and f = 30% the deviations are of the same order of magni-
tude as in the previous case (compare Figures 13 and 14).

4. CONCLUSION

We have performed 3D simulations of loss-free and lossy ran-
dom binary mixtures on a cubic grid in order to study the
transition from aggregate to cermet topology (see Figure 12).
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At a low filling factor of f = 10%, where most particles are
surrounded by matrix material, no differences in the effec-
tive material parameters are observed. At higher concentra-
tions of f = 20% and f = 30%, both permeability and per-
mittivity vary in a systematic way during the transition. This
is an effect of the changing spatial distribution of the par-
ticles. Aggregate topology, where the particle positions are
random but more restricted, is characterized by the highest
effective material parameters. Cermet topology, where arbi-
trary interparticle distances are possible, exhibits the smallest
effective permittivity and permeability values. In this concen-
tration range below the percolation threshold, the concept of
topological classes might be of use. Additional simulations
are needed in order to quantify the observed effects and to
find out whether they persist at smaller dielectric or mag-
netic contrasts.
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