Funkcja rozkładu prawdopodobieństwa Przykłady funkcji masy prawdopodobieństwa dla rozkładu Skellama. Osią poziomą jest indeks k. (Zauważmy, że funkcja jest zdefiniowana tylko dla wartości całkowitych k. Linie łączące nie wskazują ciągłości).
Rozkład ma również zastosowanie w szczególnym przypadku różnicy zależnych zmiennych losowych Poissona, ale właśnie oczywisty przypadek, gdzie dwie zmienne mają wspólny dodatkowy losowy udział, który jest anulowany przez różnicowanie patrz: Karlis i Ntzoufras (2003), gdzie jest więcej informacji i zastosowanie.
Funkcja masy prawdopodobieństwa dla rozkładu Skellama dla różnicy dwóch zmiennych o rozkładzie Poissona ze środkami i jest dany przez:
dla (i zero w przeciwnym wypadku). Funkcja masy prawdopodobieństwa Skellama dla różnicy jest korelacją wzajemną dwóch rozkładów Poissona[1]:
Ponieważ rozkład Poissona ma zero dla ujemnych wartości indeksu, wszystkie człony z ujemnymi silniami powyższej sumy są ustawione na zero. Można wykazać, że powyższe oznacza, że suma
tak, aby:
gdzie jest zmodyfikowaną funkcją Bessela pierwszego rodzaju. Szczególny przypadek dla jest podany przez Irwina (1937):
Należy również zauważyć, że używając granicznych wartości zmodyfikowanej funkcji Bessela dla małych argumentów, możemy odzyskać rozkład Poissona jako szczególny przypadek rozkładu Skellama dla
Wynika stąd, że pgf, dla funkcji prawdopodobieństwem Skellama będzie:
Zauważmy, że postać funkcji tworzącej prawdopodobieństwa pociąga za sobą to sumy lub różnice dowolnej liczby niezależnych zmienny o rozkładzie Skellama mają również rozkład Skellama. Czasami twierdzi się, że każda kombinacja liniowa dwóch zmiennych o rozkładzie Skellama ma również rozkład Skellama, ale wyraźnie nie jest to prawdą, ponieważ jakikolwiek mnożnik różny niż zmieni nośnik funkcji rozkładu.
Abramowitz M. i Stegun I.A. (Red.) (1972), Modified Bessel functions I and K. Części 9.6–9.7 w: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing, s. 374–378. Nowy Jork: Dover.
Irwin J.O. (1937), The frequency distribution of the difference between two independent variates following the same Poisson distribution. „Journal of the Royal Statistical Society: Series A”, 100 (3), 415–416. [1]
Karlis D., Ntzoufras I. (2003), Analysis of sports data using bivariate Poisson models, „Journal of the Royal Statistical Society: Series D (The Statistician)”, 52 (3), 381–393. doi:10.1111/1467-9884.00366
Karlis D., Ntzoufras I. (2006), Bayesian analysis of the differences of count data, „Statistics in Medicine”, 25, 1885–1905. [2]
Skellam J.G. (1946), The frequency distribution of the difference between two Poisson variates belonging to different populations. „Journal of the Royal Statistical Society: Series A”, 109 (3), 296. [3]