Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1980 Mar 15;186(3):833–839. doi: 10.1042/bj1860833

The regulation of brain mitochondrial calcium-ion transport. The role of ATP in the discrimination between kinetic and membrane-potential-dependent calcium-ion efflux mechanisms.

D G Nicholls, I D Scott
PMCID: PMC1161720  PMID: 7396840

Abstract

Mitochondria from guinea-pig cerebral cortex incubated in the presence of Pi or acetate are unable to regulate the extramitochondrial free Ca2+ at a steady-state which is independent of the Ca2+ accumulated in the matrix. This is due to the superimposition on kinetically regulated Ca2+ cycling of a membrane-potential-dependent reversal of the Ca2+ uniporter. The latter efflux is a consequence of a low membrane potential, which correlates with a loss of adenine nucleotide loss from the matrix, enable the mitochondria to maintain a high membrane potential and allow the mitochondria to buffer the extramitochondrial free Ca2+ precisely when up to 200 nmol of Ca2+/mg of protein is accumulated in the matrix. The steady-state extramitochondrial free Ca2+ is maintained as low as 0.3 microM. The Na+-activated efflux pathway is functional in the presence of ATP and oligomycin and accounts precisely for the change in steady-state free Ca2+ induced by Na+ addition. The need to distinguish carefully between kinetic and membrane-potential-dependent efflux pathways is emphasized and the competence of brain mitochondria to regulate cytosolic free Ca2+ concentrations in vivo is discussed.

Full text

PDF
833

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akerboom T. P., Bookelman H., Zuurendonk P. F., van der Meer R., Tager J. M. Intramitochondrial and extramitochondrial concentrations of adenine nucleotides and inorganic phosphate in isolated hepatocytes from fasted rats. Eur J Biochem. 1978 Mar 15;84(2):413–420. doi: 10.1111/j.1432-1033.1978.tb12182.x. [DOI] [PubMed] [Google Scholar]
  2. Akerman K. E. Effect of pH and Ca2+ on the retention of Ca2+ by rat liver mitochondria. Arch Biochem Biophys. 1978 Aug;189(2):256–262. doi: 10.1016/0003-9861(78)90211-4. [DOI] [PubMed] [Google Scholar]
  3. Asimakis G. K., Sordahl L. A. Effects of atractyloside and palmitoyl coenzyme A on calcium transport in cardiac mitochondria. Arch Biochem Biophys. 1977 Feb;179(1):200–210. doi: 10.1016/0003-9861(77)90104-7. [DOI] [PubMed] [Google Scholar]
  4. Azzone G. F., Pozzan T., Massari S., Bragadin M., Dell'Antone P. H+/site ratio and steady state distribution of divalent cations in mitochondria. FEBS Lett. 1977;78(1):21–24. doi: 10.1016/0014-5793(77)80264-0. [DOI] [PubMed] [Google Scholar]
  5. Blaustein M. P., Ratzlaff R. W., Kendrick N. K. The regulation of intracellular calcium in presynaptic nerve terminals. Ann N Y Acad Sci. 1978 Apr 28;307:195–212. doi: 10.1111/j.1749-6632.1978.tb41943.x. [DOI] [PubMed] [Google Scholar]
  6. Bygrave F. L. Mitochondria and the control of intracellular calcium. Biol Rev Camb Philos Soc. 1978 Feb;53(1):43–79. doi: 10.1111/j.1469-185x.1978.tb00992.x. [DOI] [PubMed] [Google Scholar]
  7. CARAFOLI E., ROSSI C. S., LEHNINGER A. L. UPTAKE OF ADENINE NUCLEOTIDES BY RESPIRING MITOCHONDRIA DURING ACTIVE ACCUMULATION OF CA++ AND PHOSPHATE. J Biol Chem. 1965 May;240:2254–2261. [PubMed] [Google Scholar]
  8. Caroni P., Schwerzmann K., Carafoli E. Separate pathways for Ca2+ uptake and release in liver mitochondria. FEBS Lett. 1978 Dec 15;96(2):339–342. doi: 10.1016/0014-5793(78)80431-1. [DOI] [PubMed] [Google Scholar]
  9. Chudapongse P., Haugaard N. The effect of phosphoenolpyruvate on calcium transport by mitochondria. Biochim Biophys Acta. 1973 May 25;307(3):599–606. doi: 10.1016/0005-2736(73)90304-0. [DOI] [PubMed] [Google Scholar]
  10. Crompton M., Heid I. The cycling of calcium, sodium, and protons across the inner membrane of cardiac mitochondria. Eur J Biochem. 1978 Nov 15;91(2):599–608. doi: 10.1111/j.1432-1033.1978.tb12713.x. [DOI] [PubMed] [Google Scholar]
  11. Crompton M., Moser R., Lüdi H., Carafoli E. The interrelations between the transport of sodium and calcium in mitochondria of various mammalian tissues. Eur J Biochem. 1978 Jan 2;82(1):25–31. doi: 10.1111/j.1432-1033.1978.tb11993.x. [DOI] [PubMed] [Google Scholar]
  12. ERNSTER L. Organization of mitochondrial DPN-linked systems. I. Reversible uncoupling of oxidative phosphorylation. Exp Cell Res. 1956 Jun;10(3):704–720. doi: 10.1016/0014-4827(56)90048-9. [DOI] [PubMed] [Google Scholar]
  13. Fiskum G., Lehninger A. L. Regulated release of Ca2+ from respiring mitochondria by Ca2+/2H+ antiport. J Biol Chem. 1979 Jul 25;254(14):6236–6239. [PubMed] [Google Scholar]
  14. Harris E. J. Modulation of Ca2+ efflux from heart mitochondria. Biochem J. 1979 Mar 15;178(3):673–680. doi: 10.1042/bj1780673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Harris E. J. The uptake and release of calcium by heart mitochondria. Biochem J. 1977 Dec 15;168(3):447–456. doi: 10.1042/bj1680447. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Klingenberg M., Grebe K., Scherer B. The binding of atractylate and carboxy-atractylate to mitochondria. Eur J Biochem. 1975 Mar 17;52(2):351–363. doi: 10.1111/j.1432-1033.1975.tb04003.x. [DOI] [PubMed] [Google Scholar]
  17. Lehninger A. L., Carafoli E., Rossi C. S. Energy-linked ion movements in mitochondrial systems. Adv Enzymol Relat Areas Mol Biol. 1967;29:259–320. doi: 10.1002/9780470122747.ch6. [DOI] [PubMed] [Google Scholar]
  18. Lehninger A. L., Vercesi A., Bababunmi E. A. Regulation of Ca2+ release from mitochondria by the oxidation-reduction state of pyridine nucleotides. Proc Natl Acad Sci U S A. 1978 Apr;75(4):1690–1694. doi: 10.1073/pnas.75.4.1690. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Lötscher H. R., Schwerzmann K., Carafoli E. The transport of Ca2+ in a purified population of inside-out vesicles from rat liver mitochondria. FEBS Lett. 1979 Mar 1;99(1):194–198. doi: 10.1016/0014-5793(79)80277-x. [DOI] [PubMed] [Google Scholar]
  20. Meisner H., Klingenberg M. Efflux of adenine nucleotides from rat liver mitochondria. J Biol Chem. 1968 Jul 10;243(13):3631–3639. [PubMed] [Google Scholar]
  21. Nicholls D. G. Calcium transport and porton electrochemical potential gradient in mitochondria from guinea-pig cerebral cortex and rat heart. Biochem J. 1978 Mar 15;170(3):511–522. doi: 10.1042/bj1700511. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Nicholls D. G. The influence of respiration and ATP hydrolysis on the proton-electrochemical gradient across the inner membrane of rat-liver mitochondria as determined by ion distribution. Eur J Biochem. 1974 Dec 16;50(1):305–315. doi: 10.1111/j.1432-1033.1974.tb03899.x. [DOI] [PubMed] [Google Scholar]
  23. Nicholls D. G. The regulation of extramitochondrial free calcium ion concentration by rat liver mitochondria. Biochem J. 1978 Nov 15;176(2):463–474. doi: 10.1042/bj1760463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Out T. A., Kemp A., Jr, Souverijn J. H. The effect of bongkrekic acid on the Ca 2+ -stimulated oxidation in rat-liver mitochondria and its relation to the efflux of intramitochondrial adenine nucleotides. Biochim Biophys Acta. 1971 Sep 7;245(2):299–304. doi: 10.1016/0005-2728(71)90148-4. [DOI] [PubMed] [Google Scholar]
  25. Peng C. F., Price D. W., Bhuvaneswaran C., Wadkins C. L. Factors that influence phosphoenolpyruvate-induced calcium efflux from rat liver mitochondria. Biochem Biophys Res Commun. 1974 Jan;56(1):134–141. doi: 10.1016/s0006-291x(74)80325-6. [DOI] [PubMed] [Google Scholar]
  26. Pfeiffer D. R., Kauffman R. F., Lardy H. A. Effects of N-ethylmaleimide on the limited uptake of Ca2+, Mn2+, and Sr2+ by rat liver mitochondria. J Biol Chem. 1978 Jun 25;253(12):4165–4171. [PubMed] [Google Scholar]
  27. Prpić V., Spencer T. L., Bygrave F. L. Stable enhancement of calcium retention in mitochondria isolated from rat liver after the administration of glucagon to the intact animal. Biochem J. 1978 Dec 15;176(3):705–714. doi: 10.1042/bj1760705. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Puskin J. S., Gunter T. E., Gunter K. K., Russell P. R. Evidence for more than one Ca2+ transport mechanism in mitochondria. Biochemistry. 1976 Aug 24;15(17):3834–3842. doi: 10.1021/bi00662a029. [DOI] [PubMed] [Google Scholar]
  29. ROSSI C. S., LEHNINGER A. L. STOICHIOMETRY OF RESPIRATORY STIMULATION, ACCUMULATION OF CA++ AND PHOSPHATE, AND OXIDATIVE PHOSPHORYLATION IN RAT LIVER MITOCHONDRIA. J Biol Chem. 1964 Nov;239:3971–3980. [PubMed] [Google Scholar]
  30. Rahamimoff H., Abramovitz E. Ca transport and ATPase activity of synaptosomal vesicles from rat brain. FEBS Lett. 1978 Aug 15;92(2):163–167. doi: 10.1016/0014-5793(78)80745-5. [DOI] [PubMed] [Google Scholar]
  31. Rahamimoff H., Abramovitz E. Calcium transport in a vesicular membrane preparation from rat brain synaptosomes. FEBS Lett. 1978 May 15;89(2):223–226. doi: 10.1016/0014-5793(78)80222-1. [DOI] [PubMed] [Google Scholar]
  32. Ramachandran C., Bygrave F. L. Calcium ion cycling in rat liver mitochondria. Biochem J. 1978 Aug 15;174(2):613–620. doi: 10.1042/bj1740613. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Roos I., Crompton M., Carafoli E. The effect of phosphoenolpyruvate on the retention of calcium by liver mitochondria. FEBS Lett. 1978 Oct 15;94(2):418–421. doi: 10.1016/0014-5793(78)80990-9. [DOI] [PubMed] [Google Scholar]
  34. Rottenberg H., Scarpa A. Calcium uptake and membrane potential in mitochondria. Biochemistry. 1974 Nov 5;13(23):4811–4817. doi: 10.1021/bi00720a020. [DOI] [PubMed] [Google Scholar]
  35. Sordahl L. A. Effects of magnesium, Ruthenium red and the antibiotic ionophore A-23187 on initial rates of calcium uptake and release by heart mitochondria. Arch Biochem Biophys. 1975 Mar;167(1):104–115. doi: 10.1016/0003-9861(75)90446-4. [DOI] [PubMed] [Google Scholar]
  36. Stucki J. W., Ineichen E. A. Energy dissipation by calcium recycling and the efficiency of calcium transport in rat-liver mitochondria. Eur J Biochem. 1974 Oct 2;48(2):365–375. doi: 10.1111/j.1432-1033.1974.tb03778.x. [DOI] [PubMed] [Google Scholar]
  37. Sul H. S., Shrago E., Shug A. L. Relationship of phosphoenolpyruvate transport, acyl coenzyme A inhibition of adenine nucleotide translocase and calcium ion efflux in guinea pig heart mitochondria. Arch Biochem Biophys. 1976 Jan;172(1):230–237. doi: 10.1016/0003-9861(76)90071-0. [DOI] [PubMed] [Google Scholar]
  38. Vasington F. D., Gazzotti P., Tiozzo R., Carafoli E. The effect of ruthenium red on Ca 2+ transport and respiration in rat liver mitochondria. Biochim Biophys Acta. 1972 Jan 21;256(1):43–54. doi: 10.1016/0005-2728(72)90161-2. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES

  NODES
admin 1
twitter 2