Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1999 Feb 15;18(4):793–803. doi: 10.1093/emboj/18.4.793

Crystal structure of MHC class II-associated p41 Ii fragment bound to cathepsin L reveals the structural basis for differentiation between cathepsins L and S.

G Guncar 1, G Pungercic 1, I Klemencic 1, V Turk 1, D Turk 1
PMCID: PMC1171172  PMID: 10022822

Abstract

The lysosomal cysteine proteases cathepsins S and L play crucial roles in the degradation of the invariant chain during maturation of MHC class II molecules and antigen processing. The p41 form of the invariant chain includes a fragment which specifically inhibits cathepsin L but not S. The crystal structure of the p41 fragment, a homologue of the thyroglobulin type-1 domains, has been determined at 2.0 A resolution in complex with cathepsin L. The structure of the p41 fragment demonstrates a novel fold, consisting of two subdomains, each stabilized by disulfide bridges. The first subdomain is an alpha-helix-beta-strand arrangement, whereas the second subdomain has a predominantly beta-strand arrangement. The wedge shape and three-loop arrangement of the p41 fragment bound to the active site cleft of cathepsin L are reminiscent of the inhibitory edge of cystatins, thus demonstrating the first example of convergent evolution observed in cysteine protease inhibitors. However, the different fold of the p41 fragment results in additional contacts with the top of the R-domain of the enzymes, which defines the specificity-determining S2 and S1' substrate-binding sites. This enables inhibitors based on the thyroglobulin type-1 domain fold, in contrast to the rather non-selective cystatins, to exhibit specificity for their _target enzymes.

Full Text

The Full Text of this article is available as a PDF (719.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alliel P. M., Perin J. P., Jollès P., Bonnet F. J. Testican, a multidomain testicular proteoglycan resembling modulators of cell social behaviour. Eur J Biochem. 1993 May 15;214(1):347–350. doi: 10.1111/j.1432-1033.1993.tb17930.x. [DOI] [PubMed] [Google Scholar]
  2. Ashkenas J., Muschler J., Bissell M. J. The extracellular matrix in epithelial biology: shared molecules and common themes in distant phyla. Dev Biol. 1996 Dec 15;180(2):433–444. doi: 10.1006/dbio.1996.0317. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Aumailley M., Battaglia C., Mayer U., Reinhardt D., Nischt R., Timpl R., Fox J. W. Nidogen mediates the formation of ternary complexes of basement membrane components. Kidney Int. 1993 Jan;43(1):7–12. doi: 10.1038/ki.1993.3. [DOI] [PubMed] [Google Scholar]
  4. Bevec T., Stoka V., Pungercic G., Dolenc I., Turk V. Major histocompatibility complex class II-associated p41 invariant chain fragment is a strong inhibitor of lysosomal cathepsin L. J Exp Med. 1996 Apr 1;183(4):1331–1338. doi: 10.1084/jem.183.4.1331. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bode W., Huber R. Natural protein proteinase inhibitors and their interaction with proteinases. Eur J Biochem. 1992 Mar 1;204(2):433–451. doi: 10.1111/j.1432-1033.1992.tb16654.x. [DOI] [PubMed] [Google Scholar]
  6. Brinkman A., Groffen C., Kortleve D. J., Geurts van Kessel A., Drop S. L. Isolation and characterization of a cDNA encoding the low molecular weight insulin-like growth factor binding protein (IBP-1). EMBO J. 1988 Aug;7(8):2417–2423. doi: 10.1002/j.1460-2075.1988.tb03087.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chapman H. A. Endosomal proteolysis and MHC class II function. Curr Opin Immunol. 1998 Feb;10(1):93–102. doi: 10.1016/s0952-7915(98)80038-1. [DOI] [PubMed] [Google Scholar]
  8. Coulombe R., Grochulski P., Sivaraman J., Ménard R., Mort J. S., Cygler M. Structure of human procathepsin L reveals the molecular basis of inhibition by the prosegment. EMBO J. 1996 Oct 15;15(20):5492–5503. [PMC free article] [PubMed] [Google Scholar]
  9. Cresswell P. Invariant chain structure and MHC class II function. Cell. 1996 Feb 23;84(4):505–507. doi: 10.1016/s0092-8674(00)81025-9. [DOI] [PubMed] [Google Scholar]
  10. Cubbage M. L., Suwanichkul A., Powell D. R. Insulin-like growth factor binding protein-3. Organization of the human chromosomal gene and demonstration of promoter activity. J Biol Chem. 1990 Jul 25;265(21):12642–12649. [PubMed] [Google Scholar]
  11. Cygler M., Sivaraman J., Grochulski P., Coulombe R., Storer A. C., Mort J. S. Structure of rat procathepsin B: model for inhibition of cysteine protease activity by the proregion. Structure. 1996 Apr 15;4(4):405–416. doi: 10.1016/s0969-2126(96)00046-9. [DOI] [PubMed] [Google Scholar]
  12. Deussing J., Roth W., Saftig P., Peters C., Ploegh H. L., Villadangos J. A. Cathepsins B and D are dispensable for major histocompatibility complex class II-mediated antigen presentation. Proc Natl Acad Sci U S A. 1998 Apr 14;95(8):4516–4521. doi: 10.1073/pnas.95.8.4516. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Downing A. K., Driscoll P. C., Harvey T. S., Dudgeon T. J., Smith B. O., Baron M., Campbell I. D. Solution structure of the fibrin binding finger domain of tissue-type plasminogen activator determined by 1H nuclear magnetic resonance. J Mol Biol. 1992 Jun 5;225(3):821–833. doi: 10.1016/0022-2836(92)90403-7. [DOI] [PubMed] [Google Scholar]
  14. Drake F. H., Dodds R. A., James I. E., Connor J. R., Debouck C., Richardson S., Lee-Rykaczewski E., Coleman L., Rieman D., Barthlow R. Cathepsin K, but not cathepsins B, L, or S, is abundantly expressed in human osteoclasts. J Biol Chem. 1996 May 24;271(21):12511–12516. doi: 10.1074/jbc.271.21.12511. [DOI] [PubMed] [Google Scholar]
  15. Fineschi B., Arneson L. S., Naujokas M. F., Miller J. Proteolysis of major histocompatibility complex class II-associated invariant chain is regulated by the alternatively spliced gene product, p41. Proc Natl Acad Sci U S A. 1995 Oct 24;92(22):10257–10261. doi: 10.1073/pnas.92.22.10257. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Fineschi B., Miller J. Endosomal proteases and antigen processing. Trends Biochem Sci. 1997 Oct;22(10):377–382. doi: 10.1016/s0968-0004(97)01116-x. [DOI] [PubMed] [Google Scholar]
  17. Fowlkes J. L., Thrailkill K. M., George-Nascimento C., Rosenberg C. K., Serra D. M. Heparin-binding, highly basic regions within the thyroglobulin type-1 repeat of insulin-like growth factor (IGF)-binding proteins (IGFBPs) -3, -5, and -6 inhibit IGFBP-4 degradation. Endocrinology. 1997 Jun;138(6):2280–2285. doi: 10.1210/endo.138.6.5182. [DOI] [PubMed] [Google Scholar]
  18. Fujishima A., Imai Y., Nomura T., Fujisawa Y., Yamamoto Y., Sugawara T. The crystal structure of human cathepsin L complexed with E-64. FEBS Lett. 1997 Apr 21;407(1):47–50. doi: 10.1016/s0014-5793(97)00216-0. [DOI] [PubMed] [Google Scholar]
  19. Germain R. N., Margulies D. H. The biochemistry and cell biology of antigen processing and presentation. Annu Rev Immunol. 1993;11:403–450. doi: 10.1146/annurev.iy.11.040193.002155. [DOI] [PubMed] [Google Scholar]
  20. Goldberg A. L., Rock K. L. Proteolysis, proteasomes and antigen presentation. Nature. 1992 Jun 4;357(6377):375–379. doi: 10.1038/357375a0. [DOI] [PubMed] [Google Scholar]
  21. Groves M. R., Taylor M. A., Scott M., Cummings N. J., Pickersgill R. W., Jenkins J. A. The prosequence of procaricain forms an alpha-helical domain that prevents access to the substrate-binding cleft. Structure. 1996 Oct 15;4(10):1193–1203. doi: 10.1016/s0969-2126(96)00127-x. [DOI] [PubMed] [Google Scholar]
  22. Guncar G., Podobnik M., Pungercar J., Strukelj B., Turk V., Turk D. Crystal structure of porcine cathepsin H determined at 2.1 A resolution: location of the mini-chain C-terminal carboxyl group defines cathepsin H aminopeptidase function. Structure. 1998 Jan 15;6(1):51–61. doi: 10.1016/s0969-2126(98)00007-0. [DOI] [PubMed] [Google Scholar]
  23. Holm L., Sander C. Alignment of three-dimensional protein structures: network server for database searching. Methods Enzymol. 1996;266:653–662. doi: 10.1016/s0076-6879(96)66041-8. [DOI] [PubMed] [Google Scholar]
  24. Illy C., Quraishi O., Wang J., Purisima E., Vernet T., Mort J. S. Role of the occluding loop in cathepsin B activity. J Biol Chem. 1997 Jan 10;272(2):1197–1202. doi: 10.1074/jbc.272.2.1197. [DOI] [PubMed] [Google Scholar]
  25. Lenarcic B., Bevec T. Thyropins--new structurally related proteinase inhibitors. Biol Chem. 1998 Feb;379(2):105–111. [PubMed] [Google Scholar]
  26. Lenarcic B., Ritonja A., Strukelj B., Turk B., Turk V. Equistatin, a new inhibitor of cysteine proteinases from Actinia equina, is structurally related to thyroglobulin type-1 domain. J Biol Chem. 1997 May 23;272(21):13899–13903. doi: 10.1074/jbc.272.21.13899. [DOI] [PubMed] [Google Scholar]
  27. Linnenbach A. J., Wojcierowski J., Wu S. A., Pyrc J. J., Ross A. H., Dietzschold B., Speicher D., Koprowski H. Sequence investigation of the major gastrointestinal tumor-associated antigen gene family, GA733. Proc Natl Acad Sci U S A. 1989 Jan;86(1):27–31. doi: 10.1073/pnas.86.1.27. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Llewellyn L. E., Bell P. M., Moczydlowski E. G. Phylogenetic survey of soluble saxitoxin-binding activity in pursuit of the function and molecular evolution of saxiphilin, a relative of transferrin. Proc Biol Sci. 1997 Jun 22;264(1383):891–902. doi: 10.1098/rspb.1997.0124. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. McGrath M. E., Palmer J. T., Brömme D., Somoza J. R. Crystal structure of human cathepsin S. Protein Sci. 1998 Jun;7(6):1294–1302. doi: 10.1002/pro.5560070604. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Mellman I., Pierre P., Amigorena S. Lonely MHC molecules seeking immunogenic peptides for meaningful relationships. Curr Opin Cell Biol. 1995 Aug;7(4):564–572. doi: 10.1016/0955-0674(95)80014-x. [DOI] [PubMed] [Google Scholar]
  31. Molina F., Bouanani M., Pau B., Granier C. Characterization of the type-1 repeat from thyroglobulin, a cysteine-rich module found in proteins from different families. Eur J Biochem. 1996 Aug 15;240(1):125–133. doi: 10.1111/j.1432-1033.1996.0125h.x. [DOI] [PubMed] [Google Scholar]
  32. Molina F., Pau B., Granier C. The type-1 repeats of thyroglobulin regulate thyroglobulin degradation and T3, T4 release in thyrocytes. FEBS Lett. 1996 Aug 12;391(3):229–231. doi: 10.1016/0014-5793(96)00708-9. [DOI] [PubMed] [Google Scholar]
  33. Morabito M. A., Moczydlowski E. Molecular cloning of bullfrog saxiphilin: a unique relative of the transferrin family that binds saxitoxin. Proc Natl Acad Sci U S A. 1994 Mar 29;91(7):2478–2482. doi: 10.1073/pnas.91.7.2478. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Musil D., Zucic D., Turk D., Engh R. A., Mayr I., Huber R., Popovic T., Turk V., Towatari T., Katunuma N. The refined 2.15 A X-ray crystal structure of human liver cathepsin B: the structural basis for its specificity. EMBO J. 1991 Sep;10(9):2321–2330. doi: 10.1002/j.1460-2075.1991.tb07771.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Nagayoshi T., Sanborn D., Hickok N. J., Olsen D. R., Fazio M. J., Chu M. L., Knowlton R., Mann K., Deutzmann R., Timpl R. Human nidogen: complete amino acid sequence and structural domains deduced from cDNAs, and evidence for polymorphism of the gene. DNA. 1989 Oct;8(8):581–594. doi: 10.1089/dna.1989.8.581. [DOI] [PubMed] [Google Scholar]
  36. Nakagawa T., Roth W., Wong P., Nelson A., Farr A., Deussing J., Villadangos J. A., Ploegh H., Peters C., Rudensky A. Y. Cathepsin L: critical role in Ii degradation and CD4 T cell selection in the thymus. Science. 1998 Apr 17;280(5362):450–453. doi: 10.1126/science.280.5362.450. [DOI] [PubMed] [Google Scholar]
  37. Newcomb J. R., Cresswell P. Characterization of endogenous peptides bound to purified HLA-DR molecules and their absence from invariant chain-associated alpha beta dimers. J Immunol. 1993 Jan 15;150(2):499–507. [PubMed] [Google Scholar]
  38. Nicholls A., Sharp K. A., Honig B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins. 1991;11(4):281–296. doi: 10.1002/prot.340110407. [DOI] [PubMed] [Google Scholar]
  39. O'Sullivan D. M., Noonan D., Quaranta V. Four Ia invariant chain forms derive from a single gene by alternate splicing and alternate initiation of transcription/translation. J Exp Med. 1987 Aug 1;166(2):444–460. doi: 10.1084/jem.166.2.444. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Ogrinc T., Dolenc I., Ritonja A., Turk V. Purification of the complex of cathepsin L and the MHC class II-associated invariant chain fragment from human kidney. FEBS Lett. 1993 Dec 28;336(3):555–559. doi: 10.1016/0014-5793(93)80875-u. [DOI] [PubMed] [Google Scholar]
  41. Peterson M., Miller J. Antigen presentation enhanced by the alternatively spliced invariant chain gene product p41. Nature. 1992 Jun 18;357(6379):596–598. doi: 10.1038/357596a0. [DOI] [PubMed] [Google Scholar]
  42. Pierre P., Mellman I. Developmental regulation of invariant chain proteolysis controls MHC class II trafficking in mouse dendritic cells. Cell. 1998 Jun 26;93(7):1135–1145. doi: 10.1016/s0092-8674(00)81458-0. [DOI] [PubMed] [Google Scholar]
  43. Podobnik M., Kuhelj R., Turk V., Turk D. Crystal structure of the wild-type human procathepsin B at 2.5 A resolution reveals the native active site of a papain-like cysteine protease zymogen. J Mol Biol. 1997 Sep 5;271(5):774–788. doi: 10.1006/jmbi.1997.1218. [DOI] [PubMed] [Google Scholar]
  44. Riese R. J., Mitchell R. N., Villadangos J. A., Shi G. P., Palmer J. T., Karp E. R., De Sanctis G. T., Ploegh H. L., Chapman H. A. Cathepsin S activity regulates antigen presentation and immunity. J Clin Invest. 1998 Jun 1;101(11):2351–2363. doi: 10.1172/JCI1158. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Riese R. J., Wolf P. R., Brömme D., Natkin L. R., Villadangos J. A., Ploegh H. L., Chapman H. A. Essential role for cathepsin S in MHC class II-associated invariant chain processing and peptide loading. Immunity. 1996 Apr;4(4):357–366. doi: 10.1016/s1074-7613(00)80249-6. [DOI] [PubMed] [Google Scholar]
  46. Roche P. A., Cresswell P. Proteolysis of the class II-associated invariant chain generates a peptide binding site in intracellular HLA-DR molecules. Proc Natl Acad Sci U S A. 1991 Apr 15;88(8):3150–3154. doi: 10.1073/pnas.88.8.3150. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Rodriguez G. M., Diment S. Destructive proteolysis by cysteine proteases in antigen presentation of ovalbumin. Eur J Immunol. 1995 Jul;25(7):1823–1827. doi: 10.1002/eji.1830250705. [DOI] [PubMed] [Google Scholar]
  48. Sali A., Blundell T. L. Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol. 1993 Dec 5;234(3):779–815. doi: 10.1006/jmbi.1993.1626. [DOI] [PubMed] [Google Scholar]
  49. Strnad J., Hamilton A. E., Beavers L. S., Gamboa G. C., Apelgren L. D., Taber L. D., Sportsman J. R., Bumol T. F., Sharp J. D., Gadski R. A. Molecular cloning and characterization of a human adenocarcinoma/epithelial cell surface antigen complementary DNA. Cancer Res. 1989 Jan 15;49(2):314–317. [PubMed] [Google Scholar]
  50. Strubin M., Berte C., Mach B. Alternative splicing and alternative initiation of translation explain the four forms of the Ia antigen-associated invariant chain. EMBO J. 1986 Dec 20;5(13):3483–3488. doi: 10.1002/j.1460-2075.1986.tb04673.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Stubbs M. T., Laber B., Bode W., Huber R., Jerala R., Lenarcic B., Turk V. The refined 2.4 A X-ray crystal structure of recombinant human stefin B in complex with the cysteine proteinase papain: a novel type of proteinase inhibitor interaction. EMBO J. 1990 Jun;9(6):1939–1947. doi: 10.1002/j.1460-2075.1990.tb08321.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Turk B., Turk V., Turk D. Structural and functional aspects of papain-like cysteine proteinases and their protein inhibitors. Biol Chem. 1997 Mar-Apr;378(3-4):141–150. [PubMed] [Google Scholar]
  53. Turk D., Guncar G., Podobnik M., Turk B. Revised definition of substrate binding sites of papain-like cysteine proteases. Biol Chem. 1998 Feb;379(2):137–147. doi: 10.1515/bchm.1998.379.2.137. [DOI] [PubMed] [Google Scholar]
  54. Turk D., Podobnik M., Kuhelj R., Dolinar M., Turk V. Crystal structures of human procathepsin B at 3.2 and 3.3 Angstroms resolution reveal an interaction motif between a papain-like cysteine protease and its propeptide. FEBS Lett. 1996 Apr 22;384(3):211–214. doi: 10.1016/0014-5793(96)00309-2. [DOI] [PubMed] [Google Scholar]
  55. Yamashita M., Konagaya S. A novel cysteine protease inhibitor of the egg of chum salmon, containing a cysteine-rich thyroglobulin-like motif. J Biol Chem. 1996 Jan 19;271(3):1282–1284. doi: 10.1074/jbc.271.3.1282. [DOI] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES

  NODES
Association 1
twitter 2