Abstract
Nitric oxide synthase (EC 1.14.13.39) catalyses the conversion of arginine, NADPH and oxygen to nitric oxide and citrulline, using haem, (6R)-5,6,7,8-tetrahydro-l-biopterin (tetrahydrobiopterin), calmodulin, FAD and FMN as cofactors. The enzyme consists of a central calmodulin-binding sequence flanked on the N-terminal side by a haem-binding region that contains the arginine and tetrahydrobiopterin sites and on the C-terminal side by a region homologous with NADPH:cytochrome P-450 reductase. By using domain boundaries defined by limited proteolysis of full-length enzyme, recombinant haem-binding regions of rat brain neuronal nitric oxide synthase were expressed and purified. Two proteins were made in high yield: one, corresponding to residues 221-724, contained bound haem and tetrahydrobiopterin and was able to bind Nomega-nitro-l-arginine (nitroarginine) or arginine; the other, containing residues 350-724, contained bound haem but was unable to bind tetrahydrobiopterin, nitroarginine or arginine. These results showed that rat brain neuronal nitric oxide synthase contains a critical determinant for arginine/tetrahydrobiopterin binding between residues 221 and 350. Limited proteolysis with chymotrypsin of the former protein resulted in a new species with an N-terminal residue 275 that retained the ability to bind nitroarginine, further defining the critical region for arginine binding as being between 275 and 350. Comparison of the sequences of nitric oxide synthase and the tetrahydrobiopterin-requiring amino acid hydroxylases revealed a similarity in the region between residues 470 and 600, suggesting that this might represent the core region of the pterin-binding site. The stoichiometries of binding of substrate and cofactors to the recombinant domains were not more than 0.5 mol/mol of monomer, suggesting that there might be a single high-affinity site per dimer.
Full Text
The Full Text of this article is available as a PDF (712.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Baek K. J., Thiel B. A., Lucas S., Stuehr D. J. Macrophage nitric oxide synthase subunits. Purification, characterization, and role of prosthetic groups and substrate in regulating their association into a dimeric enzyme. J Biol Chem. 1993 Oct 5;268(28):21120–21129. [PubMed] [Google Scholar]
- Charles I. G., Chubb A., Gill R., Clare J., Lowe P. N., Holmes L. S., Page M., Keeling J. G., Moncada S., Riveros-Moreno V. Cloning and expression of a rat neuronal nitric oxide synthase coding sequence in a baculovirus/insect cell system. Biochem Biophys Res Commun. 1993 Nov 15;196(3):1481–1489. doi: 10.1006/bbrc.1993.2419. [DOI] [PubMed] [Google Scholar]
- Chen P. F., Tsai A. L., Wu K. K. Cysteine 184 of endothelial nitric oxide synthase is involved in heme coordination and catalytic activity. J Biol Chem. 1994 Oct 7;269(40):25062–25066. [PubMed] [Google Scholar]
- Chen P. F., Tsai A. L., Wu K. K. Cysteine 99 of endothelial nitric oxide synthase (NOS-III) is critical for tetrahydrobiopterin-dependent NOS-III stability and activity. Biochem Biophys Res Commun. 1995 Oct 24;215(3):1119–1129. doi: 10.1006/bbrc.1995.2579. [DOI] [PubMed] [Google Scholar]
- Cho H. J., Martin E., Xie Q. W., Sassa S., Nathan C. Inducible nitric oxide synthase: identification of amino acid residues essential for dimerization and binding of tetrahydrobiopterin. Proc Natl Acad Sci U S A. 1995 Dec 5;92(25):11514–11518. doi: 10.1073/pnas.92.25.11514. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cubberley R. R., Alderton W. K., Boyhan A., Charles I. G., Lowe P. N., Old R. W. Cysteine-200 of human inducible nitric oxide synthase is essential for dimerization of haem domains and for binding of haem, nitroarginine and tetrahydrobiopterin. Biochem J. 1997 Apr 1;323(Pt 1):141–146. doi: 10.1042/bj3230141. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Degtyarenko K. N., Archakov A. I. Molecular evolution of P450 superfamily and P450-containing monooxygenase systems. FEBS Lett. 1993 Oct 11;332(1-2):1–8. doi: 10.1016/0014-5793(93)80470-f. [DOI] [PubMed] [Google Scholar]
- Dickson P. W., Jennings I. G., Cotton R. G. Delineation of the catalytic core of phenylalanine hydroxylase and identification of glutamate 286 as a critical residue for pterin function. J Biol Chem. 1994 Aug 12;269(32):20369–20375. [PubMed] [Google Scholar]
- Furfine E. S., Harmon M. F., Paith J. E., Garvey E. P. Selective inhibition of constitutive nitric oxide synthase by L-NG-nitroarginine. Biochemistry. 1993 Aug 24;32(33):8512–8517. doi: 10.1021/bi00084a017. [DOI] [PubMed] [Google Scholar]
- Ghosh D. K., Stuehr D. J. Macrophage NO synthase: characterization of isolated oxygenase and reductase domains reveals a head-to-head subunit interaction. Biochemistry. 1995 Jan 24;34(3):801–807. doi: 10.1021/bi00003a013. [DOI] [PubMed] [Google Scholar]
- Grenett H. E., Ledley F. D., Reed L. L., Woo S. L. Full-length cDNA for rabbit tryptophan hydroxylase: functional domains and evolution of aromatic amino acid hydroxylases. Proc Natl Acad Sci U S A. 1987 Aug;84(16):5530–5534. doi: 10.1073/pnas.84.16.5530. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harteneck C., Klatt P., Schmidt K., Mayer B. Expression of rat brain nitric oxide synthase in baculovirus-infected insect cells and characterization of the purified enzyme. Biochem J. 1994 Dec 15;304(Pt 3):683–686. doi: 10.1042/bj3040683. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hevel J. M., Marletta M. A. Macrophage nitric oxide synthase: relationship between enzyme-bound tetrahydrobiopterin and synthase activity. Biochemistry. 1992 Aug 11;31(31):7160–7165. doi: 10.1021/bi00146a019. [DOI] [PubMed] [Google Scholar]
- Jennings I. G., Kemp B. E., Cotton R. G. Localization of cofactor binding sites with monoclonal anti-idiotype antibodies: phenylalanine hydroxylase. Proc Natl Acad Sci U S A. 1991 Jul 1;88(13):5734–5738. doi: 10.1073/pnas.88.13.5734. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Klatt P., Pfeiffer S., List B. M., Lehner D., Glatter O., Bächinger H. P., Werner E. R., Schmidt K., Mayer B. Characterization of heme-deficient neuronal nitric-oxide synthase reveals a role for heme in subunit dimerization and binding of the amino acid substrate and tetrahydrobiopterin. J Biol Chem. 1996 Mar 29;271(13):7336–7342. doi: 10.1074/jbc.271.13.7336. [DOI] [PubMed] [Google Scholar]
- Klatt P., Schmid M., Leopold E., Schmidt K., Werner E. R., Mayer B. The pteridine binding site of brain nitric oxide synthase. Tetrahydrobiopterin binding kinetics, specificity, and allosteric interaction with the substrate domain. J Biol Chem. 1994 May 13;269(19):13861–13866. [PubMed] [Google Scholar]
- Klatt P., Schmidt K., Lehner D., Glatter O., Bächinger H. P., Mayer B. Structural analysis of porcine brain nitric oxide synthase reveals a role for tetrahydrobiopterin and L-arginine in the formation of an SDS-resistant dimer. EMBO J. 1995 Aug 1;14(15):3687–3695. doi: 10.1002/j.1460-2075.1995.tb00038.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Knowles R. G., Moncada S. Nitric oxide synthases in mammals. Biochem J. 1994 Mar 1;298(Pt 2):249–258. doi: 10.1042/bj2980249. [DOI] [PMC free article] [PubMed] [Google Scholar]
- List B. M., Klatt P., Werner E. R., Schmidt K., Mayer B. Overexpression of neuronal nitric oxide synthase in insect cells reveals requirement of haem for tetrahydrobiopterin binding. Biochem J. 1996 Apr 1;315(Pt 1):57–63. doi: 10.1042/bj3150057. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lowe P. N., Smith D., Stammers D. K., Riveros-Moreno V., Moncada S., Charles I., Boyhan A. Identification of the domains of neuronal nitric oxide synthase by limited proteolysis. Biochem J. 1996 Feb 15;314(Pt 1):55–62. doi: 10.1042/bj3140055. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Marletta M. A. Nitric oxide synthase: aspects concerning structure and catalysis. Cell. 1994 Sep 23;78(6):927–930. doi: 10.1016/0092-8674(94)90268-2. [DOI] [PubMed] [Google Scholar]
- Mayer B., John M., Heinzel B., Werner E. R., Wachter H., Schultz G., Böhme E. Brain nitric oxide synthase is a biopterin- and flavin-containing multi-functional oxido-reductase. FEBS Lett. 1991 Aug 19;288(1-2):187–191. doi: 10.1016/0014-5793(91)81031-3. [DOI] [PubMed] [Google Scholar]
- McMillan K., Masters B. S. Prokaryotic expression of the heme- and flavin-binding domains of rat neuronal nitric oxide synthase as distinct polypeptides: identification of the heme-binding proximal thiolate ligand as cysteine-415. Biochemistry. 1995 Mar 21;34(11):3686–3693. doi: 10.1021/bi00011a025. [DOI] [PubMed] [Google Scholar]
- Neckameyer W. S., White K. A single locus encodes both phenylalanine hydroxylase and tryptophan hydroxylase activities in Drosophila. J Biol Chem. 1992 Feb 25;267(6):4199–4206. [PubMed] [Google Scholar]
- Nishimura J. S., Martasek P., McMillan K., Salerno J., Liu Q., Gross S. S., Masters B. S. Modular structure of neuronal nitric oxide synthase: localization of the arginine binding site and modulation by pterin. Biochem Biophys Res Commun. 1995 May 16;210(2):288–294. doi: 10.1006/bbrc.1995.1659. [DOI] [PubMed] [Google Scholar]
- Ponting C. P., Phillips C. DHR domains in syntrophins, neuronal NO synthases and other intracellular proteins. Trends Biochem Sci. 1995 Mar;20(3):102–103. doi: 10.1016/s0968-0004(00)88973-2. [DOI] [PubMed] [Google Scholar]
- Ravichandran K. G., Boddupalli S. S., Hasermann C. A., Peterson J. A., Deisenhofer J. Crystal structure of hemoprotein domain of P450BM-3, a prototype for microsomal P450's. Science. 1993 Aug 6;261(5122):731–736. doi: 10.1126/science.8342039. [DOI] [PubMed] [Google Scholar]
- Renaud J. P., Boucher J. L., Vadon S., Delaforge M., Mansuy D. Particular ability of liver P450s3A to catalyze the oxidation of N omega-hydroxyarginine to citrulline and nitrogen oxides and occurrence in no synthases of a sequence very similar to the heme-binding sequence in P450s. Biochem Biophys Res Commun. 1993 Apr 15;192(1):53–60. doi: 10.1006/bbrc.1993.1380. [DOI] [PubMed] [Google Scholar]
- Richards M. K., Marletta M. A. Characterization of neuronal nitric oxide synthase and a C415H mutant, purified from a baculovirus overexpression system. Biochemistry. 1994 Dec 13;33(49):14723–14732. doi: 10.1021/bi00253a010. [DOI] [PubMed] [Google Scholar]
- Riveros-Moreno V., Heffernan B., Torres B., Chubb A., Charles I., Moncada S. Purification to homogeneity and characterisation of rat brain recombinant nitric oxide synthase. Eur J Biochem. 1995 May 15;230(1):52–57. doi: 10.1111/j.1432-1033.1995.tb20533.x. [DOI] [PubMed] [Google Scholar]
- Rodríguez-Crespo I., Gerber N. C., Ortiz de Montellano P. R. Endothelial nitric-oxide synthase. Expression in Escherichia coli, spectroscopic characterization, and role of tetrahydrobiopterin in dimer formation. J Biol Chem. 1996 May 10;271(19):11462–11467. doi: 10.1074/jbc.271.19.11462. [DOI] [PubMed] [Google Scholar]
- Roman L. J., Sheta E. A., Martasek P., Gross S. S., Liu Q., Masters B. S. High-level expression of functional rat neuronal nitric oxide synthase in Escherichia coli. Proc Natl Acad Sci U S A. 1995 Aug 29;92(18):8428–8432. doi: 10.1073/pnas.92.18.8428. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sheta E. A., McMillan K., Masters B. S. Evidence for a bidomain structure of constitutive cerebellar nitric oxide synthase. J Biol Chem. 1994 May 27;269(21):15147–15153. [PubMed] [Google Scholar]
- Shiman R., Gray D. W., Hill M. A. Regulation of rat liver phenylalanine hydroxylase. I. Kinetic properties of the enzyme's iron and enzyme reduction site. J Biol Chem. 1994 Oct 7;269(40):24637–24646. [PubMed] [Google Scholar]
- Shiman R., Xia T., Hill M. A., Gray D. W. Regulation of rat liver phenylalanine hydroxylase. II. Substrate binding and the role of activation in the control of enzymatic activity. J Biol Chem. 1994 Oct 7;269(40):24647–24656. [PubMed] [Google Scholar]
- Skinner R. H., Bradley S., Brown A. L., Johnson N. J., Rhodes S., Stammers D. K., Lowe P. N. Use of the Glu-Glu-Phe C-terminal epitope for rapid purification of the catalytic domain of normal and mutant ras GTPase-activating proteins. J Biol Chem. 1991 Aug 5;266(22):14163–14166. [PubMed] [Google Scholar]
- Smith R. F., Smith T. F. Automatic generation of primary sequence patterns from sets of related protein sequences. Proc Natl Acad Sci U S A. 1990 Jan;87(1):118–122. doi: 10.1073/pnas.87.1.118. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smith R. F., Smith T. F. Pattern-induced multi-sequence alignment (PIMA) algorithm employing secondary structure-dependent gap penalties for use in comparative protein modelling. Protein Eng. 1992 Jan;5(1):35–41. doi: 10.1093/protein/5.1.35. [DOI] [PubMed] [Google Scholar]
- Wang J., Stuehr D. J., Rousseau D. L. Tetrahydrobiopterin-deficient nitric oxide synthase has a modified heme environment and forms a cytochrome P-420 analogue. Biochemistry. 1995 May 30;34(21):7080–7087. doi: 10.1021/bi00021a020. [DOI] [PubMed] [Google Scholar]
- White K. A., Marletta M. A. Nitric oxide synthase is a cytochrome P-450 type hemoprotein. Biochemistry. 1992 Jul 28;31(29):6627–6631. doi: 10.1021/bi00144a001. [DOI] [PubMed] [Google Scholar]
- Wiseman T., Williston S., Brandts J. F., Lin L. N. Rapid measurement of binding constants and heats of binding using a new titration calorimeter. Anal Biochem. 1989 May 15;179(1):131–137. doi: 10.1016/0003-2697(89)90213-3. [DOI] [PubMed] [Google Scholar]
- Woolf J. H., Nichol C. A., Duch D. S. Determination of biopterin and other pterins in tissues and body fluids by high-performance liquid chromatography. J Chromatogr. 1983 May 13;274:398–402. doi: 10.1016/s0378-4347(00)84451-5. [DOI] [PubMed] [Google Scholar]
- Zhao G., Xia T., Song J., Jensen R. A. Pseudomonas aeruginosa possesses homologues of mammalian phenylalanine hydroxylase and 4 alpha-carbinolamine dehydratase/DCoH as part of a three-component gene cluster. Proc Natl Acad Sci U S A. 1994 Feb 15;91(4):1366–1370. doi: 10.1073/pnas.91.4.1366. [DOI] [PMC free article] [PubMed] [Google Scholar]