Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2002 Feb 1;361(Pt 3):537–546. doi: 10.1042/0264-6021:3610537

Heterogeneity of airways mucus: variations in the amounts and glycoforms of the major oligomeric mucins MUC5AC and MUC5B.

Sara Kirkham 1, John K Sheehan 1, David Knight 1, Paul S Richardson 1, David J Thornton 1
PMCID: PMC1222336  PMID: 11802783

Abstract

Respiratory mucus contains a mixture of gel-forming mucins but the functional significance of these different mucin species is unknown. To help gain a better understanding of mucus in airways we therefore need to ascertain the concentration of each of the gel-forming mucins within respiratory secretions. Thus the aim of this study was to determine the amounts of specific gel-forming mucins directly from solubilized secretions of the airways and purified mucin preparations. We investigated the feasibility of using direct-binding ELISA employing mucin-specific antisera but were unable to obtain reliable data owing to interference with the immobilization of the mucins on the assay surface by 6 M urea and high levels of non-mucin proteins. We therefore developed an alternative approach based on quantitative Western blotting after agarose-gel electrophoresis, which was not subject to these problems. Here we demonstrate that this procedure provides reliable and reproducible data and have employed it to determine the amounts of the MUC2, MUC5AC and MUC5B mucins in saline-induced sputa from healthy airways and spontaneous sputa from asthmatic airways. Additionally we have used this procedure to analyse these glycoproteins in mucin preparations purified from cystic fibrosis (CF) and chronic obstructive pulmonary disease (COPD) mucus. Our findings indicate that MUC5AC and MUC5B are the major oligomeric mucins and that airways mucus contains variable amounts of these glycoproteins. By contrast, the MUC2 mucin comprised, at most, only 2.5% of the weight of the gel-forming mucins, indicating that MUC2 is a minor component in sputum. Finally, we show that the amounts and glycosylated variants of the MUC5AC and MUC5B mucins can be altered significantly in diseased airways with, for instance, an increase in the low-charge form of the MUC5B mucin in CF and COPD mucus.

Full Text

The Full Text of this article is available as a PDF (203.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Carlstedt I., Sheehan J. K. Structure and macromolecular properties of cervical mucus glycoproteins. Symp Soc Exp Biol. 1989;43:289–316. [PubMed] [Google Scholar]
  2. Davies J. R., Svitacheva N., Lannefors L., Kornfält R., Carlstedt I. Identification of MUC5B, MUC5AC and small amounts of MUC2 mucins in cystic fibrosis airway secretions. Biochem J. 1999 Dec 1;344(Pt 2):321–330. [PMC free article] [PubMed] [Google Scholar]
  3. Desseyn J. L., Aubert J. P., Van Seuningen I., Porchet N., Laine A. Genomic organization of the 3' region of the human mucin gene MUC5B. J Biol Chem. 1997 Jul 4;272(27):16873–16883. doi: 10.1074/jbc.272.27.16873. [DOI] [PubMed] [Google Scholar]
  4. Desseyn J. L., Buisine M. P., Porchet N., Aubert J. P., Laine A. Genomic organization of the human mucin gene MUC5B. cDNA and genomic sequences upstream of the large central exon. J Biol Chem. 1998 Nov 13;273(46):30157–30164. doi: 10.1074/jbc.273.46.30157. [DOI] [PubMed] [Google Scholar]
  5. Desseyn J. L., Guyonnet-Dupérat V., Porchet N., Aubert J. P., Laine A. Human mucin gene MUC5B, the 10.7-kb large central exon encodes various alternate subdomains resulting in a super-repeat. Structural evidence for a 11p15.5 gene family. J Biol Chem. 1997 Feb 7;272(6):3168–3178. doi: 10.1074/jbc.272.6.3168. [DOI] [PubMed] [Google Scholar]
  6. Dunnill M. S., Massarella G. R., Anderson J. A. A comparison of the quantitative anatomy of the bronchi in normal subjects, in status asthmaticus, in chronic bronchitis, and in emphysema. Thorax. 1969 Mar;24(2):176–179. doi: 10.1136/thx.24.2.176. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Fahy J. V., Steiger D. J., Liu J., Basbaum C. B., Finkbeiner W. E., Boushey H. A. Markers of mucus secretion and DNA levels in induced sputum from asthmatic and from healthy subjects. Am Rev Respir Dis. 1993 May;147(5):1132–1137. doi: 10.1164/ajrccm/147.5.1132. [DOI] [PubMed] [Google Scholar]
  8. Hovenberg H. W., Davies J. R., Carlstedt I. Different mucins are produced by the surface epithelium and the submucosa in human trachea: identification of MUC5AC as a major mucin from the goblet cells. Biochem J. 1996 Aug 15;318(Pt 1):319–324. doi: 10.1042/bj3180319. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hovenberg H. W., Davies J. R., Herrmann A., Lindén C. J., Carlstedt I. MUC5AC, but not MUC2, is a prominent mucin in respiratory secretions. Glycoconj J. 1996 Oct;13(5):839–847. doi: 10.1007/BF00702348. [DOI] [PubMed] [Google Scholar]
  10. Jeffery P. K. Morphology of the airway wall in asthma and in chronic obstructive pulmonary disease. Am Rev Respir Dis. 1991 May;143(5 Pt 1):1152–1161. doi: 10.1164/ajrccm/143.5_Pt_1.1152. [DOI] [PubMed] [Google Scholar]
  11. Levine S. J., Larivée P., Logun C., Angus C. W., Ognibene F. P., Shelhamer J. H. Tumor necrosis factor-alpha induces mucin hypersecretion and MUC-2 gene expression by human airway epithelial cells. Am J Respir Cell Mol Biol. 1995 Feb;12(2):196–204. doi: 10.1165/ajrcmb.12.2.7865217. [DOI] [PubMed] [Google Scholar]
  12. Li D., Gallup M., Fan N., Szymkowski D. E., Basbaum C. B. Cloning of the amino-terminal and 5'-flanking region of the human MUC5AC mucin gene and transcriptional up-regulation by bacterial exoproducts. J Biol Chem. 1998 Mar 20;273(12):6812–6820. doi: 10.1074/jbc.273.12.6812. [DOI] [PubMed] [Google Scholar]
  13. Lin H., Carlson D. M., St George J. A., Plopper C. G., Wu R. An ELISA method for the quantitation of tracheal mucins from human and nonhuman primates. Am J Respir Cell Mol Biol. 1989 Jul;1(1):41–48. doi: 10.1165/ajrcmb/1.1.41. [DOI] [PubMed] [Google Scholar]
  14. Lopez-Vidriero M. T., Reid L. Chemical markers of mucous and serum glycoproteins and their relation to viscosity in mucoid and purulent sputum from various hypersecretory diseases. Am Rev Respir Dis. 1978 Mar;117(3):465–477. doi: 10.1164/arrd.1978.117.3.465. [DOI] [PubMed] [Google Scholar]
  15. Meezaman D., Charles P., Daskal E., Polymeropoulos M. H., Martin B. M., Rose M. C. Cloning and analysis of cDNA encoding a major airway glycoprotein, human tracheobronchial mucin (MUC5). J Biol Chem. 1994 Apr 29;269(17):12932–12939. [PubMed] [Google Scholar]
  16. Pin I., Gibson P. G., Kolendowicz R., Girgis-Gabardo A., Denburg J. A., Hargreave F. E., Dolovich J. Use of induced sputum cell counts to investigate airway inflammation in asthma. Thorax. 1992 Jan;47(1):25–29. doi: 10.1136/thx.47.1.25. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Sharma P., Dudus L., Nielsen P. A., Clausen H., Yankaskas J. R., Hollingsworth M. A., Engelhardt J. F. MUC5B and MUC7 are differentially expressed in mucous and serous cells of submucosal glands in human bronchial airways. Am J Respir Cell Mol Biol. 1998 Jul;19(1):30–37. doi: 10.1165/ajrcmb.19.1.3054. [DOI] [PubMed] [Google Scholar]
  18. Sheehan J. K., Brazeau C., Kutay S., Pigeon H., Kirkham S., Howard M., Thornton D. J. Physical characterization of the MUC5AC mucin: a highly oligomeric glycoprotein whether isolated from cell culture or in vivo from respiratory mucous secretions. Biochem J. 2000 Apr 1;347(Pt 1):37–44. [PMC free article] [PubMed] [Google Scholar]
  19. Sheehan J. K., Carlstedt I. Size heterogeneity of human cervical mucus glycoproteins. Studies performed with rate-zonal centrifugation and laser light-scattering. Biochem J. 1987 Aug 1;245(3):757–762. doi: 10.1042/bj2450757. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Sheehan J. K., Howard M., Richardson P. S., Longwill T., Thornton D. J. Physical characterization of a low-charge glycoform of the MUC5B mucin comprising the gel-phase of an asthmatic respiratory mucous plug. Biochem J. 1999 Mar 1;338(Pt 2):507–513. [PMC free article] [PubMed] [Google Scholar]
  21. Shin C. Y., Kang S. J., Kim K. C., Ko K. H. Comparison between ELISA and gel-filtration assay for the quantitation of airway mucins. Arch Pharm Res. 1998 Jun;21(3):253–259. doi: 10.1007/BF02975284. [DOI] [PubMed] [Google Scholar]
  22. Thornton D. J., Carlstedt I., Howard M., Devine P. L., Price M. R., Sheehan J. K. Respiratory mucins: identification of core proteins and glycoforms. Biochem J. 1996 Jun 15;316(Pt 3):967–975. doi: 10.1042/bj3160967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Thornton D. J., Carlstedt I., Sheehan J. K. Identification of glycoproteins on nitrocellulose membranes and gels. Mol Biotechnol. 1996 Apr;5(2):171–176. doi: 10.1007/BF02789065. [DOI] [PubMed] [Google Scholar]
  24. Thornton D. J., Gray T., Nettesheim P., Howard M., Koo J. S., Sheehan J. K. Characterization of mucins from cultured normal human tracheobronchial epithelial cells. Am J Physiol Lung Cell Mol Physiol. 2000 Jun;278(6):L1118–L1128. doi: 10.1152/ajplung.2000.278.6.L1118. [DOI] [PubMed] [Google Scholar]
  25. Thornton D. J., Holmes D. F., Sheehan J. K., Carlstedt I. Quantitation of mucus glycoproteins blotted onto nitrocellulose membranes. Anal Biochem. 1989 Oct;182(1):160–164. doi: 10.1016/0003-2697(89)90735-5. [DOI] [PubMed] [Google Scholar]
  26. Thornton D. J., Howard M., Devine P. L., Sheehan J. K. Methods for separation and deglycosylation of mucin subunits. Anal Biochem. 1995 May 1;227(1):162–167. doi: 10.1006/abio.1995.1266. [DOI] [PubMed] [Google Scholar]
  27. Thornton D. J., Howard M., Khan N., Sheehan J. K. Identification of two glycoforms of the MUC5B mucin in human respiratory mucus. Evidence for a cysteine-rich sequence repeated within the molecule. J Biol Chem. 1997 Apr 4;272(14):9561–9566. doi: 10.1074/jbc.272.14.9561. [DOI] [PubMed] [Google Scholar]
  28. Thornton D. J., Khan N., Mehrotra R., Howard M., Veerman E., Packer N. H., Sheehan J. K. Salivary mucin MG1 is comprised almost entirely of different glycosylated forms of the MUC5B gene product. Glycobiology. 1999 Mar;9(3):293–302. doi: 10.1093/glycob/9.3.293. [DOI] [PubMed] [Google Scholar]
  29. Voynow J. A., Young L. R., Wang Y., Horger T., Rose M. C., Fischer B. M. Neutrophil elastase increases MUC5AC mRNA and protein expression in respiratory epithelial cells. Am J Physiol. 1999 May;276(5 Pt 1):L835–L843. doi: 10.1152/ajplung.1999.276.5.L835. [DOI] [PubMed] [Google Scholar]
  30. Wickström C., Davies J. R., Eriksen G. V., Veerman E. C., Carlstedt I. MUC5B is a major gel-forming, oligomeric mucin from human salivary gland, respiratory tract and endocervix: identification of glycoforms and C-terminal cleavage. Biochem J. 1998 Sep 15;334(Pt 3):685–693. doi: 10.1042/bj3340685. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Xu G., Huan L., Khatri I., Sajjan U. S., McCool D., Wang D., Jones C., Forstner G., Forstner J. Human intestinal mucin-like protein (MLP) is homologous with rat MLP in the C-terminal region, and is encoded by a gene on chromosome 11 p 15.5. Biochem Biophys Res Commun. 1992 Mar 16;183(2):821–828. doi: 10.1016/0006-291x(92)90557-2. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES

  NODES
twitter 2