JOURNAL OF BACTERIOLOGY, J 2002, . 3485 3491 0021-9193/02/\$04.00+0 DOI: 10.1128/JB.184.13.3485 3491.2002 $C_1 \rightarrow e_1 \ me_1 \rightarrow me_1 \rightarrow me_2 \ A \ Re_1 \ Re_1 \rightarrow Re_2 \ Re_1 \ Re_1 \rightarrow me_2 \ A \ Re_2 \$

Department of TB Immunology, Statens Serum Institut, Copenhagen,¹ and MDS Protana, Odense,³ Denmark, and Tuberculosis Research Section, National Institute of Allergy and Infectious Disease, Rockville, Maryland²

R_c t 10 D_c 2002/A_c 4 A 2002

The events involved in the establishment of a latent infection with *Mycobacterium tuberculosis* are not fully understood, but hypoxic conditions are generally believed to be the environment encountered by the pathogen in the central part of the granuloma. The present study was undertaken to provide insight into *M. tuberculosis* protein expression in in vitro latency models where oxygen is depleted. The response of *M. tuberculosis* to low-oxygen conditions was investigated in both cellular and extracellular proteins by metabolic labeling, two-dimensional electrophoresis, and protein signature peptide analysis by liquid chromatography-mass spectrometry. By peptide mass fingerprinting and immunodetection, five proteins more abundant under low-oxygen conditions were identified from several lysates of *M. tuberculosis*: Rv0569, Rv2031c (HspX), Rv2623, Rv2626c, and Rv3841 (BfrB). In *M. tuberculosis* culture filtrates, two additional proteins, Rv0363c (Fba) and Rv2780 (Ald), were found in increased amounts under oxygen limitation. These results extend our understanding of the hypoxic response in *M. tuberculosis* and potentially provide important insights into the physiology of the latent bacilli.

M. tuberculosis M. bovis BCG (M. bovis (H X, Rt 2031) M. tuberculosis Η Х c. (31). -c R M. bovis BCG . . 113 16 M. tuberculosis M. bovis BCG i e 100e BCG M. tuberculosis 111 C.

^{*} C TB I -* C TB I -S, D TB I -S, D TB I -* C TB I -S, D TB I -* C TB I -*

3486 ROSENKRANDS ET AL.

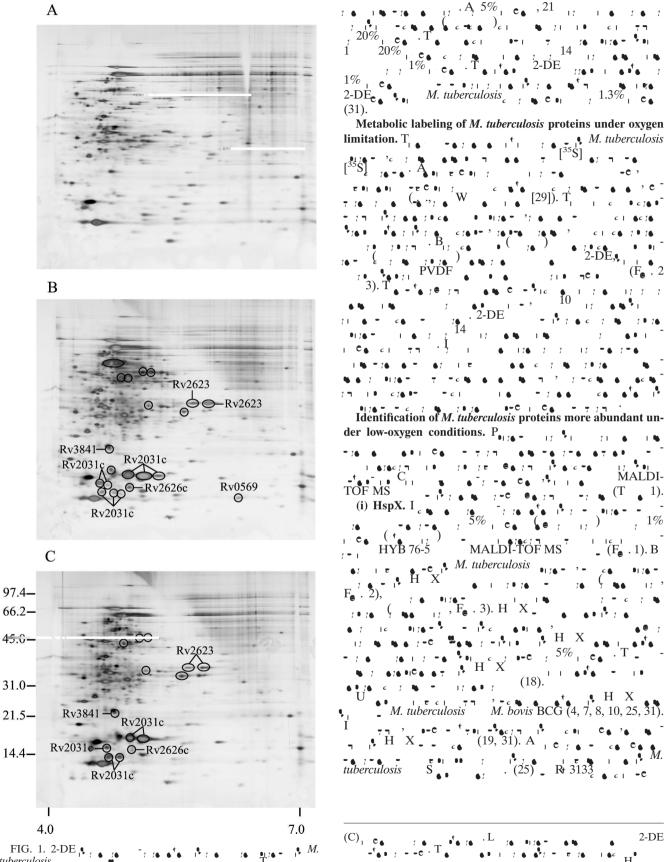
 $[^{35}S]_{16}$, $1 \bullet - 1 \bullet \bullet \bullet \bullet \bullet M. tuber$ culosis Ι - t - 5 - c • 1 71C , • , • , • (LC-MS) ● 11 c1 ● 1 ● 2-DE .Q 1-0 19 LC-MS •116 - [†] - c ● c16 •-1 = 7 **e** , , , (13). J=6 6¹1 6 7 JI 76 A - 00 10 60-07 · · · • • • • • LC-MS 7 10 77 0176.1 **N** (\$ • /. · · - - -17 15 - 11 17 \therefore M. tuberculosis, 3,924• -c[↓]∎ • 76 41 17 6 • 61 **,**¶ 1 **6**7 7 6 1 7 7 **⁺** *M*. tuberculosis ī · C. ۰.-د ۲۹ د ۲ •176 --76 ĽC-MS ۵ 💧

MATERIALS AND METHODS

Metabolic labeling. A C . $\begin{array}{c} B_{c} & e & e & e \\ B_{c} & e & e & e \\ F_{c} & f & f & f \\ F_{c} & f & f & f \\ F_{c} & f \\ F_$

Growth under defined oxygen tensions. *M. tuberculosis* H37R M (31). C i = 0

Image analysis of 2-DE gels. A (U = S) (U


Identification of 2-DE spots. A, PVDF $F_{1} = \frac{1}{2} C_{1} + \frac{1}$

 $\begin{array}{c} \text{(23)} \\ \text{F} \\ \text{(25)} \\ \text{(26)} \\ \text{(26)} \\ \text{(26)} \\ \text{(26)} \\ \text{(27)} \\ \text{$ •17101 6 6 7 - 6 c • - 6 TOF) MS REFLEX III , (MALDI- F_1 , F_1 , F_2 , F_1 , F_2 , F_3 , F_1 , F_2 , F_3 , F_3 , F_4 , F_3 , F_4 , F_4 , F_5 , F_6 , F_7 , F_8 , F_1 , F_1 , F_2 , F_3 , F_1 , F_2 , F_3 , F_4 , F_1 , F_2 , F_3 , F_1 , F_2 , F_1 , F_2 , F_3 , F_1 , F_2 , F_1 , F_2 , F_1 , F_2 , F_1 , F_2 , TOF) MS REFLEX III (B) $(B - D)_1 + (B - Q)_1 + (D - Q)_1$ F (B) $(B - Q)_1 + (D - Q)_1 + (D - Q)_1$ (C) $(C - Q)_1 + (C - Q)_1 + (C - Q)_1 + (C - Q)_1$ (C) $(C - Q)_1 + (C - Q)_1 +$

tuberculosis H37R $_{c}$ (5). LC-MS. C $_{i}$ (5). $_{i}$ (6). $_{i}$ (5). $_{i}$ (6). $_{i}$ (7). $_$ 67 7 96 97.5% 7 99.29 99.88% 7

RESULTS AND DISCUSSION

Steady-state levels of *M. tuberculosis* proteins under defined . (31), 2-DE , *M*. oxygen tensions. I Y • ^{1.3} tuberculosis 20% c 7 8 76 67 -6 61 1-1 1-7 6 C6 CC . 7. 7 7 17 ,**.** .-17 6 🍋 1 1 1 - 76 6 M. tuber-C ∎1 67 66 6 ⁰1 T •• - 7• - C• c1 7), c-20% c , 2-DE 7 ♦ ♦ I°C♦ 7 I . . 1 • 1• ⁻1 1• , ٩. -t - t - c - c - 2-DE • • • •176 -. 1). T c. . t •, , • • [†]• ; • ; • 1.7 • • · IC • I 17

tuberculosis \mathbf{c} \mathbf{t} \mathbf{t} \mathbf{c} \mathbf{t} \mathbf

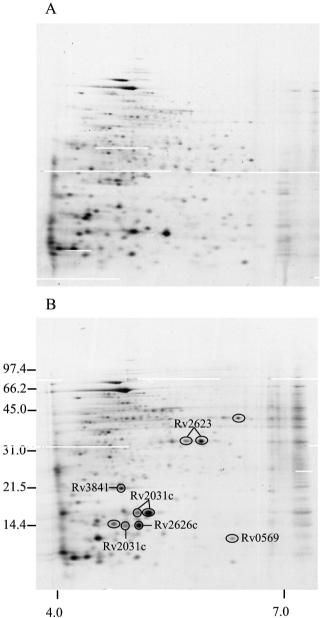
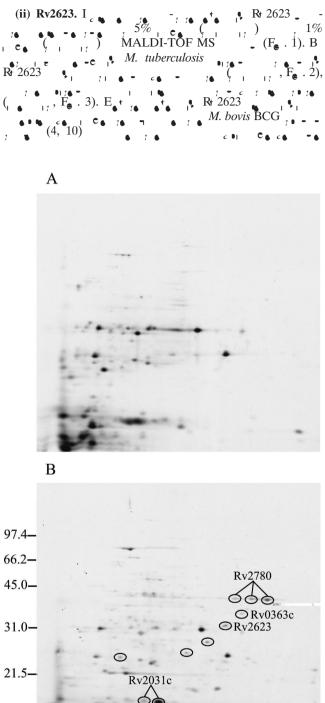



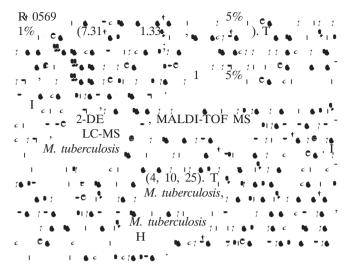
FIG. 2. 2-DE M. tuberculosise $[^{35}S]$ 37 C (C 1 1 A) M. tuberculosis

 $\begin{array}{c} \mathbf{H} \quad \mathbf{X} \\ \mathbf{H} \quad \mathbf{H} \quad \mathbf{X} \\ \mathbf{H} \quad \mathbf{$

14.4 - Rv2031c - Rv2626c

4.0 7.0 FIG. 3. 2-DE 7 \mathbb{C} \mathbb{C}

	TABLE 1.	M. tubercu	losis 🗤 🗧 👔 👖 🐂	· • 2-D]	• - ^{2-DE} • • • • • • • • •			
P.,,, - G	$ \begin{array}{c} T \\ \bullet & (D)^{a} \end{array} $	\mathbf{I}^{a}		$\frac{S_{1} - T_{1}}{L_{1} - (5\%_{1} - c_{1})^{c}}$		$\frac{D_{e_{1}}}{L_{e_{1}}}$	$\frac{1}{C} + \frac{1}{2} + \frac{1}$	
Rt 0363 fb Rt 0569 fb Rt 2031 hs Rt 2623 fb Rt 2626 fb Rt 2780 all Rt 3841 bf	$\begin{array}{ccc} 9.5 \\ pX & 16.2 \\ 31.6 \\ 15.5 \\ d & 38.7 \\ \end{array}$	6.08 M 4.75 M 5.56 M 4.77 M 6.18 H	AS AS, I €/€∈/ ٦ AS, I €/€∈/ ٦ AS AS	NI ↑ ↑ ↑	NI ↑ ↑ ↑	NI ↑ ↑ ↑	$\uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow $ NI	
$\begin{array}{c} \stackrel{a}{\overset{b}{\leftarrow}} A \\ \stackrel{b}{\overset{b}{\leftarrow}} \uparrow, M_{1} \\ \stackrel{c}{\overset{c}{\leftarrow}} \overset{b}{\overset{f}{\leftarrow}} \cdot IB, \\ \stackrel{d}{\overset{d}{\leftarrow}} S \\ \stackrel{F}{\overset{F}{\leftarrow}} \cdot IC, \\ \stackrel{c}{\overset{c}{\leftarrow}} S \\ \stackrel{F}{\overset{F}{\leftarrow}} \cdot S, \\ \stackrel{F}{\overset{F}{\leftarrow}} \cdot 2, \\ \stackrel{f}{\overset{f}{\overset{f}{\leftarrow}}} S \\ \stackrel{F}{\overset{F}{\leftarrow}} \cdot 3, \\ \end{array}$	_	; =/ E	76 50/T 68 L _{c7} /). 1 C6 76 7 ℃ , 1	= < 16 6 6 ¹ 6 1 ⁶ 7 = 91	76-i 60 ⁵ 6 <i %<="" td=""><td>11 C T N T I I I</td><td>, c_{6 76} , ;</td></i>	11 C T N T I I I	, c _{6 76} , ;	
(20), (iii) Rv262 (Fe . 1). T <i>M. tu</i> <i>J J G</i> <i>M. bovis</i> BC <i>G. J B. su</i> (5). (iv) BfrB (MALDI-TO) <i>J C</i> <i>J C</i>	3_{c} 1_{c} 1_{c	ee Esche Esche 1 1 $1R15%$ 1 $e1111111111$	$F_{1} = 2623$ $F_{2} = 2626$ $MALDI-TOF MS$ $F_{1} = 2)$ $F_{1} = 2)$ $F_{2} = 2626$ $F_{1} = 100$ $F_{2} = 2626$ $F_{1} = 100$ $F_{1} = 2626$ $F_{2} = 2626$ $F_{1} = 100$ $F_{2} = 2626$ $F_{2} = 100$ $F_{1} = 100$ $F_{2} = 100$ $F_{1} = 100$ $F_{2} = 100$	(4, 10) $(4, 10)$ $(7, 7)$	(17, 24). F (17,		M. bovis BCG (14, 21). (14, 21). (14, 21). M. smegmatis, c_1 f_1 f_2 f_1 f_2 f_1 f_2 f_1 f_2 f_1 f_2 f_1 f_2 f_1 f_2 f_1 f_2 f_1 f_2 f_1 f_2 f_1 f_2 f_1 f_2 f_1 f_2 f_1 f_2 f_1 f_1 f_2 f_1 f_1 f_1 f_1 f_2 f_1 f_1 f_1 f_1 f_1 f_1 f_1 f_1 f_1 f_1 f_2 f_1 f_2 f_1 f_1 f_1 f_1 f_1 f_1 f_1 f_1 f_1 f_2 f_1 f_1 f_1 f_2 f_1 f_1 f_2 f_1 f_1 f_2 f_1 f_1 f_2 f_1 f_1 f_2 f_1 f_1 f_2 f_1 f_1 f_2 f_1 f_1 f_2 f_1 f_1 f_2 f_1 f_1 f_2 f_1 f_1 f_2 f_1 f_1 f_2 f_1 f_1 f_2 f_1 f_1 f_2 f_1 f_1 f_2 f_1 f_1 f_2 f_1 f_1 f_2 f_1 f_1 f_2 f_1 f_1 f_2 f_1 f_2 f_1 f_1 f_2 f_1 f_1 f_2 f_1 f_1 f_2 f_1 f_1 f_2 f_1 f_1 f_2 f_1 f_1 f_2 f_1 f_1 f_2 f_1 f_1 f_2 f_1 f_1 f_2 f_1 f_1 f_2 f_1 f_1 f_2 f_1 f_1 f_2 f_1 f_1 f_2 f_1 f_1 f_2 f_1 f_1 f_2 f_1 f_1 f_2 f_1 f_1 f_2 f_1 f_1 f_1 f_2 f_1 f_1 f_1 f_2 f_1 f	


	LE 2. S _e tuberculosis		LC-MS	
P.,,	G,	<i>m/z</i> , , , , , , , , , , , , , , , , , , ,	R 7	
			1% 5%	
Rt 0363	fba	947.0 (1), 474.0 (2) 1,493.8 (1), 747.3 (2) 1,703.0 (1), 852.0 (2)	0.98 1.72	
Rt 0569		1,703.0(1), 852.0(2) 1,164.2(1), 582.6(2) 1,270.4(1), 635.7(2) 1,617.7(2), 1.078.4(3)	1.33 7.31	
Rt 2031	hspX	1,017.7(2), 1,078.4(3) 1,163.2(1), 582.1(2) 1,459.6(1), 730.3(2) 1,715.9(1), 858.4(2)	4.06 6.87	
Rt 2623		1,102.3 (1), 551.6 (2) 1,387.6 (1), 694.3 (2) 1,937.2 (1), 969.1 (2)	4.76 5.28	
Rt 2626		943.1 (1), 472.0 (2) 1,698.8 (1), 849.9 (2) 1,257.5 (1), 629.2 (2)	2.81 4.88	
Rt 2780	ald	1,298.5(1), 649.7(2) 1,317.4(1), 659.2(2) 1,712.0(1), 856.5(2)	1.28 2.29	
R 3841	bfrB	1,266.3 (1), 633.6 (2) 1,578.9 (1), 789.9 (2) 1,633.7 (1), 817.3 (2)	4.27 5.19	

-e , , P., .a m/z +^bR¹, <u>t</u> 20% e

ĽĆ-MŚ (Rt 0363 (Rt 2780),

۰. M. tuberculosis LC

LC ·MS 5% C.

ACKNOWLEDGMENTS

REFERENCES

- Andersen, Å. B., P. Andersen, and L. Ljungqvist. 1992. S 40,000-culosis. I. I. Gold Strategy and Strategy an
- Belli, M. A. Wilson, W. F. Ohl, H. Salaholi, G. A. Schoonik, S. Katte, DNA
 S. 284:1520
 Becg. W. Salaron, M. School, J. B. School, J. School,
- Gordon, K. Eiglmeier, S. Gas, C. E. Barry III, F. Tekaia, K. Badcock, D. Basham, D. Brown, T. Chillingworth, R. Connor, R. Davies, K. Devlin, T. Feltwell, S. Gentles, N. Hamlin, S. Holroyd, T. Hornsby, K. Jagels, and B. G.

- Cunningham, A. F., and C. L. Spreadbury. 1998. Methods in the second seco **183:**5311 5316.
- 183:5311 5316.
 9. Fenton, M. J., and M. W. Vermeulen. 1996. I
 10. Florczyk, M. A., L. A. McCue, R. F. Stack, C. R. Hauer, and K. A. McDonough. 2001. I
 11. Forczyk, M. A., L. A. McCue, R. F. Stack, C. R. Hauer, and K. A. McDonough. 2001. I · R 2623 I . 69:5777 5785. γ - **c** - **c** - γ **s** - 1 - γ **γ** - **γ**
- 11. Hutter, B., and T. Dick. 1998. I Mycobacterium smegmatis. FEMS M 1 . L_{11} . 167: 7 11.

- J. Mattow, P. Halada, S. Lamer, K. Hagens, and S. H. Kaufmann. 1999.

- 15. Klausen, J., M. Magnusson, A. B. Andersen, and C. Koch. 1994. C *M. tuberculosis*, *J. J. J. T. 7*, 40:345, 349. 16. Mahairas, G. G., P. J. Sabo, M. J. Hickey, D. C. Singh, and C. K. Stover.
- 1996. M BCG (M. bovis, J. B 178:1274 1282. 17. Marino, M., T. Hoffmann, R. Schmid, H. Mobitz, and D. Jahn. 2000. Pacillus subtilis
- C c Bacillus subtilis 146:97 105. 18. Mattow, J., P. R. Jungblut, E. C. Muller, and S. H. Kaufmann. 2001. I
- Mycobacterium tubercu-losis
 H37R
 <

- 20. Nystrom, T., and F. C. Neidhardt. 1994. E . U. A., *Escherichia coli* . H.: 37 544.
- 21. Rosenkrands, I., A. King, K. Weldingh, M. Moniatte, E. Moertz, and P. Andersen. 2000. T.
 Andersen. 2000. T.
 Mycobacterium tuberculosis. E.
 Rosenkrands, I., P. B. Rasmussen, M. Carnio, S. Jacobsen, M. Theisen, and 200
- 22. Rosenkrändos, I., F. B. Rashussen, N. Cathlo, S. Jacobsch, M. Pillora, and P. Andersen. 1998. I Mycobacterium tuberculosis, Internet and Action 1998. I Mycobacterium tuberculosis, Internet and Action 1998. I South Control 1998. I Mycobacterium tuberculosis, Internet and Action 1998. I South Control 1998. I Mycobacterium tuberculosis, Internet and Action 1998. I South Control 1998. I South Control 1998. I Mycobacterium tuberculosis, Internet and Action 1998. I South Control 1998. I Mycobacterium tuberculosis, Internet and Action 1998. I Mycobacterium tuberculosi and Action 1998. I Mycobacteri and Action 1998. I Mycobacteri
- Gianetri, and P. Andersen. 2000. M -c - - - Mycobacte-

- rium tuberculosis 24. Saier, M. H., Jr., J. J. Ye, S. Klinke, and E. Nino. 1996. I $H_{1} = \frac{1}{10} + \frac{1}$
- G. K. Schoolnik. 2001. Register $M_{1,c}$ N. $M_{1,c}$ N. $M_{2,c}$ Mycobacterium tuberculosis 7534 7539.
- 26. Shevchenko, A., M. Wilm, O. Vorm, and M. Mann. 1996. M $3^{\circ}_{8:850} = 3^{\circ}_{550}$, $3^{\circ}_{170} = 3^{\circ}_{10}$, $-^{\circ}_{10} = 5^{\circ}_{10}$, $a^{\circ}_{10} = 5^{\circ}_{10}$, $A^{\circ}_{10} = 10^{\circ}_{10}$.
- 27. Sudre, P., G. ten Dam, and A. Kochi. 1992. T
- 28. Wayne, L. G. 1960. T
- 28. wayne, L. G. 1900. 1 cross rest in the relation of the relation o
- $\begin{array}{c} \text{Mycobacterium tuberculosis}, & \text{III. 1996. S} \\ \text{Mycobacterium tuberculosis}, & \text{III. 1996. S} \\ \text{Mycobacterium tuberculosis}, & \text{III. 1996. S} \\ \text{Mycobacterium tuberculosis}, & \text{III. 1998. T} \\ \text{$