Skip to main content
Genetics logoLink to Genetics
. 1999 Apr;151(4):1379–1391. doi: 10.1093/genetics/151.4.1379

Positive selection of novel peroxisome biogenesis-defective mutants of the yeast Pichia pastoris.

M A Johnson 1, H R Waterham 1, G P Ksheminska 1, L R Fayura 1, J L Cereghino 1, O V Stasyk 1, M Veenhuis 1, A R Kulachkovsky 1, A A Sibirny 1, J M Cregg 1
PMCID: PMC1460572  PMID: 10101164

Abstract

We have developed two novel schemes for the direct selection of peroxisome-biogenesis-defective (pex) mutants of the methylotrophic yeast Pichia pastoris. Both schemes take advantage of our observation that methanol-induced pex mutants contain little or no alcohol oxidase (AOX) activity. AOX is a peroxisomal matrix enzyme that catalyzes the first step in the methanol-utilization pathway. One scheme utilizes allyl alcohol, a compound that is not toxic to cells but is oxidized by AOX to acrolein, a compound that is toxic. Exposure of mutagenized populations of AOX-induced cells to allyl alcohol selectively kills AOX-containing cells. However, pex mutants without AOX are able to grow. The second scheme utilizes a P. pastoris strain that is defective in formaldehyde dehydrogenase (FLD), a methanol pathway enzyme required to metabolize formaldehyde, the product of AOX. AOX-induced cells of fld1 strains are sensitive to methanol because of the accumulation of formaldehyde. However, fld1 pex mutants, with little active AOX, do not efficiently oxidize methanol to formaldehyde and therefore are not sensitive to methanol. Using these selections, new pex mutant alleles in previously identified PEX genes have been isolated along with mutants in three previously unidentified PEX groups.

Full Text

The Full Text of this article is available as a PDF (483.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albertini M., Rehling P., Erdmann R., Girzalsky W., Kiel J. A., Veenhuis M., Kunau W. H. Pex14p, a peroxisomal membrane protein binding both receptors of the two PTS-dependent import pathways. Cell. 1997 Apr 4;89(1):83–92. doi: 10.1016/s0092-8674(00)80185-3. [DOI] [PubMed] [Google Scholar]
  2. Cregg J. M., Madden K. R., Barringer K. J., Thill G. P., Stillman C. A. Functional characterization of the two alcohol oxidase genes from the yeast Pichia pastoris. Mol Cell Biol. 1989 Mar;9(3):1316–1323. doi: 10.1128/mcb.9.3.1316. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cregg J. M., Shen S., Johnson M., Waterham H. R. Classical genetic manipulation. Methods Mol Biol. 1998;103:17–26. doi: 10.1385/0-89603-421-6:17. [DOI] [PubMed] [Google Scholar]
  4. Dommes V., Baumgart C., Kunau W. H. Degradation of unsaturated fatty acids in peroxisomes. Existence of a 2,4-dienoyl-CoA reductase pathway. J Biol Chem. 1981 Aug 25;256(16):8259–8262. [PubMed] [Google Scholar]
  5. Dyer J. M., McNew J. A., Goodman J. M. The sorting sequence of the peroxisomal integral membrane protein PMP47 is contained within a short hydrophilic loop. J Cell Biol. 1996 Apr;133(2):269–280. doi: 10.1083/jcb.133.2.269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Elgersma Y., Elgersma-Hooisma M., Wenzel T., McCaffery J. M., Farquhar M. G., Subramani S. A mobile PTS2 receptor for peroxisomal protein import in Pichia pastoris. J Cell Biol. 1998 Feb 23;140(4):807–820. doi: 10.1083/jcb.140.4.807. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Elgersma Y., Kwast L., Klein A., Voorn-Brouwer T., van den Berg M., Metzig B., America T., Tabak H. F., Distel B. The SH3 domain of the Saccharomyces cerevisiae peroxisomal membrane protein Pex13p functions as a docking site for Pex5p, a mobile receptor for the import PTS1-containing proteins. J Cell Biol. 1996 Oct;135(1):97–109. doi: 10.1083/jcb.135.1.97. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Elgersma Y., van den Berg M., Tabak H. F., Distel B. An efficient positive selection procedure for the isolation of peroxisomal import and peroxisome assembly mutants of Saccharomyces cerevisiae. Genetics. 1993 Nov;135(3):731–740. doi: 10.1093/genetics/135.3.731. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Erdmann R., Blobel G. Identification of Pex13p a peroxisomal membrane receptor for the PTS1 recognition factor. J Cell Biol. 1996 Oct;135(1):111–121. doi: 10.1083/jcb.135.1.111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Erdmann R., Veenhuis M., Kunau W. H. Peroxisomes: Organelles at the crossroads. Trends Cell Biol. 1997 Oct;7(10):400–407. doi: 10.1016/S0962-8924(97)01126-4. [DOI] [PubMed] [Google Scholar]
  11. GLOSSOP M. W., LOW M. D. Some observations on severe tetanus treated by paralysis and I. P. P. R. Br J Anaesth. 1957 Jul;29(7):326–331. doi: 10.1093/bja/29.7.326. [DOI] [PubMed] [Google Scholar]
  12. Glover J. R., Andrews D. W., Subramani S., Rachubinski R. A. Mutagenesis of the amino _targeting signal of Saccharomyces cerevisiae 3-ketoacyl-CoA thiolase reveals conserved amino acids required for import into peroxisomes in vivo. J Biol Chem. 1994 Mar 11;269(10):7558–7563. [PubMed] [Google Scholar]
  13. Gould S. G., Keller G. A., Subramani S. Identification of a peroxisomal _targeting signal at the carboxy terminus of firefly luciferase. J Cell Biol. 1987 Dec;105(6 Pt 2):2923–2931. doi: 10.1083/jcb.105.6.2923. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gould S. J., Kalish J. E., Morrell J. C., Bjorkman J., Urquhart A. J., Crane D. I. Pex13p is an SH3 protein of the peroxisome membrane and a docking factor for the predominantly cytoplasmic PTs1 receptor. J Cell Biol. 1996 Oct;135(1):85–95. doi: 10.1083/jcb.135.1.85. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Gould S. J., McCollum D., Spong A. P., Heyman J. A., Subramani S. Development of the yeast Pichia pastoris as a model organism for a genetic and molecular analysis of peroxisome assembly. Yeast. 1992 Aug;8(8):613–628. doi: 10.1002/yea.320080805. [DOI] [PubMed] [Google Scholar]
  16. Kalish J. E., Keller G. A., Morrell J. C., Mihalik S. J., Smith B., Cregg J. M., Gould S. J. Characterization of a novel component of the peroxisomal protein import apparatus using fluorescent peroxisomal proteins. EMBO J. 1996 Jul 1;15(13):3275–3285. [PMC free article] [PubMed] [Google Scholar]
  17. Komori M., Rasmussen S. W., Kiel J. A., Baerends R. J., Cregg J. M., van der Klei I. J., Veenhuis M. The Hansenula polymorpha PEX14 gene encodes a novel peroxisomal membrane protein essential for peroxisome biogenesis. EMBO J. 1997 Jan 2;16(1):44–53. doi: 10.1093/emboj/16.1.44. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Koutz P., Davis G. R., Stillman C., Barringer K., Cregg J., Thill G. Structural comparison of the Pichia pastoris alcohol oxidase genes. Yeast. 1989 May-Jun;5(3):167–177. doi: 10.1002/yea.320050306. [DOI] [PubMed] [Google Scholar]
  19. Liu H., Tan X., Russell K. A., Veenhuis M., Cregg J. M. PER3, a gene required for peroxisome biogenesis in Pichia pastoris, encodes a peroxisomal membrane protein involved in protein import. J Biol Chem. 1995 May 5;270(18):10940–10951. doi: 10.1074/jbc.270.18.10940. [DOI] [PubMed] [Google Scholar]
  20. Liu H., Tan X., Veenhuis M., McCollum D., Cregg J. M. An efficient screen for peroxisome-deficient mutants of Pichia pastoris. J Bacteriol. 1992 Aug;174(15):4943–4951. doi: 10.1128/jb.174.15.4943-4951.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. McCollum D., Monosov E., Subramani S. The pas8 mutant of Pichia pastoris exhibits the peroxisomal protein import deficiencies of Zellweger syndrome cells--the PAS8 protein binds to the COOH-terminal tripeptide peroxisomal _targeting signal, and is a member of the TPR protein family. J Cell Biol. 1993 May;121(4):761–774. doi: 10.1083/jcb.121.4.761. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Monosov E. Z., Wenzel T. J., Lüers G. H., Heyman J. A., Subramani S. Labeling of peroxisomes with green fluorescent protein in living P. pastoris cells. J Histochem Cytochem. 1996 Jun;44(6):581–589. doi: 10.1177/44.6.8666743. [DOI] [PubMed] [Google Scholar]
  23. Osumi T., Tsukamoto T., Hata S., Yokota S., Miura S., Fujiki Y., Hijikata M., Miyazawa S., Hashimoto T. Amino-terminal presequence of the precursor of peroxisomal 3-ketoacyl-CoA thiolase is a cleavable signal peptide for peroxisomal _targeting. Biochem Biophys Res Commun. 1991 Dec 31;181(3):947–954. doi: 10.1016/0006-291x(91)92028-i. [DOI] [PubMed] [Google Scholar]
  24. Rachubinski R. A., Subramani S. How proteins penetrate peroxisomes. Cell. 1995 Nov 17;83(4):525–528. doi: 10.1016/0092-8674(95)90091-8. [DOI] [PubMed] [Google Scholar]
  25. Rehling P., Marzioch M., Niesen F., Wittke E., Veenhuis M., Kunau W. H. The import receptor for the peroxisomal _targeting signal 2 (PTS2) in Saccharomyces cerevisiae is encoded by the PAS7 gene. EMBO J. 1996 Jun 17;15(12):2901–2913. [PMC free article] [PubMed] [Google Scholar]
  26. Shen S., Sulter G., Jeffries T. W., Cregg J. M. A strong nitrogen source-regulated promoter for controlled expression of foreign genes in the yeast Pichia pastoris. Gene. 1998 Aug 17;216(1):93–102. doi: 10.1016/s0378-1119(98)00315-1. [DOI] [PubMed] [Google Scholar]
  27. Sibirny A. A., Titorenko V. I., Gonchar M. V., Ubiyvovk V. M., Ksheminskaya G. P., Vitvitskaya O. P. Genetic control of methanol utilization in yeasts. J Basic Microbiol. 1988;28(5):293–319. doi: 10.1002/jobm.3620280503. [DOI] [PubMed] [Google Scholar]
  28. Subramani S. PEX genes on the rise. Nat Genet. 1997 Apr;15(4):331–333. doi: 10.1038/ng0497-331. [DOI] [PubMed] [Google Scholar]
  29. Ueda M., Mozaffar S., Tanaka A. Catalase from Candida boidinii 2201. Methods Enzymol. 1990;188:463–467. doi: 10.1016/0076-6879(90)88074-k. [DOI] [PubMed] [Google Scholar]
  30. Van der Leij I., Van den Berg M., Boot R., Franse M., Distel B., Tabak H. F. Isolation of peroxisome assembly mutants from Saccharomyces cerevisiae with different morphologies using a novel positive selection procedure. J Cell Biol. 1992 Oct;119(1):153–162. doi: 10.1083/jcb.119.1.153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Waterham H. R., Digan M. E., Koutz P. J., Lair S. V., Cregg J. M. Isolation of the Pichia pastoris glyceraldehyde-3-phosphate dehydrogenase gene and regulation and use of its promoter. Gene. 1997 Feb 20;186(1):37–44. doi: 10.1016/s0378-1119(96)00675-0. [DOI] [PubMed] [Google Scholar]
  32. Waterham H. R., Russell K. A., Vries Y., Cregg J. M. Peroxisomal _targeting, import, and assembly of alcohol oxidase in Pichia pastoris. J Cell Biol. 1997 Dec 15;139(6):1419–1431. doi: 10.1083/jcb.139.6.1419. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Waterham H. R., de Vries Y., Russel K. A., Xie W., Veenhuis M., Cregg J. M. The Pichia pastoris PER6 gene product is a peroxisomal integral membrane protein essential for peroxisome biogenesis and has sequence similarity to the Zellweger syndrome protein PAF-1. Mol Cell Biol. 1996 May;16(5):2527–2536. doi: 10.1128/mcb.16.5.2527. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Zhang J. W., Han Y., Lazarow P. B. Novel peroxisome clustering mutants and peroxisome biogenesis mutants of Saccharomyces cerevisiae. J Cell Biol. 1993 Dec;123(5):1133–1147. doi: 10.1083/jcb.123.5.1133. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Zhang J. W., Lazarow P. B. Peb1p (Pas7p) is an intraperoxisomal receptor for the NH2-terminal, type 2, peroxisomal _targeting sequence of thiolase: Peb1p itself is _targeted to peroxisomes by an NH2-terminal peptide. J Cell Biol. 1996 Feb;132(3):325–334. doi: 10.1083/jcb.132.3.325. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. de Hoop M. J., Ab G. Import of proteins into peroxisomes and other microbodies. Biochem J. 1992 Sep 15;286(Pt 3):657–669. doi: 10.1042/bj2860657. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. van der Klei I. J., Bystrykh L. V., Harder W. Alcohol oxidase from Hansenula polymorpha CBS 4732. Methods Enzymol. 1990;188:420–427. doi: 10.1016/0076-6879(90)88067-k. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES

  NODES
twitter 2