Skip to main content
Genetics logoLink to Genetics
. 2002 Jul;161(3):1257–1267. doi: 10.1093/genetics/161.3.1257

Genetic analysis of sunflower domestication.

John M Burke 1, Shunxue Tang 1, Steven J Knapp 1, Loren H Rieseberg 1
PMCID: PMC1462183  PMID: 12136028

Abstract

Quantitative trait loci (QTL) controlling phenotypic differences between cultivated sunflower and its wild progenitor were investigated in an F(3) mapping population. Composite interval mapping revealed the presence of 78 QTL affecting the 18 quantitative traits of interest, with 2-10 QTL per trait. Each QTL explained 3.0-68.0% of the phenotypic variance, although only 4 (corresponding to 3 of 18 traits) had effects >25%. Overall, 51 of the 78 QTL produced phenotypic effects in the expected direction, and for 13 of 18 traits the majority of QTL had the expected effect. Despite being distributed across 15 of the 17 linkage groups, there was a substantial amount of clustering among QTL controlling different traits. In several cases, regions influencing multiple traits harbored QTL with antagonistic effects, producing a cultivar-like phenotype for some traits and a wild-like phenotype for others. On the basis of the directionality of QTL, strong directional selection for increased achene size appears to have played a central role in sunflower domestication. None of the other traits show similar evidence of selection. The occurrence of numerous wild alleles with cultivar-like effects, combined with the lack of major QTL, suggests that sunflower was readily domesticated.

Full Text

The Full Text of this article is available as a PDF (191.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Churchill G. A., Doerge R. W. Empirical threshold values for quantitative trait mapping. Genetics. 1994 Nov;138(3):963–971. doi: 10.1093/genetics/138.3.963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Doebley J., Stec A. Genetic analysis of the morphological differences between maize and teosinte. Genetics. 1991 Sep;129(1):285–295. doi: 10.1093/genetics/129.1.285. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Doebley J., Stec A., Wendel J., Edwards M. Genetic and morphological analysis of a maize-teosinte F2 population: implications for the origin of maize. Proc Natl Acad Sci U S A. 1990 Dec 15;87(24):9888–9892. doi: 10.1073/pnas.87.24.9888. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Doerge R. W., Churchill G. A. Permutation tests for multiple loci affecting a quantitative character. Genetics. 1996 Jan;142(1):285–294. doi: 10.1093/genetics/142.1.285. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Don R. H., Cox P. T., Wainwright B. J., Baker K., Mattick J. S. 'Touchdown' PCR to circumvent spurious priming during gene amplification. Nucleic Acids Res. 1991 Jul 25;19(14):4008–4008. doi: 10.1093/nar/19.14.4008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Eyre-Walker A., Gaut R. L., Hilton H., Feldman D. L., Gaut B. S. Investigation of the bottleneck leading to the domestication of maize. Proc Natl Acad Sci U S A. 1998 Apr 14;95(8):4441–4446. doi: 10.1073/pnas.95.8.4441. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gedil M. A., Wye C., Berry S., Segers B., Peleman J., Jones R., Leon A., Slabaugh M. B., Knapp S. J. An integrated restriction fragment length polymorphism--amplified fragment length polymorphism linkage map for cultivated sunflower. Genome. 2001 Apr;44(2):213–221. [PubMed] [Google Scholar]
  8. Kim S. C., Rieseberg L. H. Genetic architecture of species differences in annual sunflowers: implications for adaptive trait introgression. Genetics. 1999 Oct;153(2):965–977. doi: 10.1093/genetics/153.2.965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Lander E. S., Green P., Abrahamson J., Barlow A., Daly M. J., Lincoln S. E., Newberg L. A., Newburg L. MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics. 1987 Oct;1(2):174–181. doi: 10.1016/0888-7543(87)90010-3. [DOI] [PubMed] [Google Scholar]
  10. Langham D G. The Inheritance of Intergeneric Differences in Zea-Euchlaena Hybrids. Genetics. 1940 Jan;25(1):88–107. doi: 10.1093/genetics/25.1.88. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Orr H. A. Testing natural selection vs. genetic drift in phenotypic evolution using quantitative trait locus data. Genetics. 1998 Aug;149(4):2099–2104. doi: 10.1093/genetics/149.4.2099. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Paterson A. H., Damon S., Hewitt J. D., Zamir D., Rabinowitch H. D., Lincoln S. E., Lander E. S., Tanksley S. D. Mendelian factors underlying quantitative traits in tomato: comparison across species, generations, and environments. Genetics. 1991 Jan;127(1):181–197. doi: 10.1093/genetics/127.1.181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Zeng Z. B. Precision mapping of quantitative trait loci. Genetics. 1994 Apr;136(4):1457–1468. doi: 10.1093/genetics/136.4.1457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Zeng Z. B. Theoretical basis for separation of multiple linked gene effects in mapping quantitative trait loci. Proc Natl Acad Sci U S A. 1993 Dec 1;90(23):10972–10976. doi: 10.1073/pnas.90.23.10972. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES

  NODES
twitter 2