Skip to main content
Philosophical Transactions of the Royal Society B: Biological Sciences logoLink to Philosophical Transactions of the Royal Society B: Biological Sciences
. 2003 Aug 29;358(1436):1363–1370. doi: 10.1098/rstb.2003.1324

Specification of germ cell fate in mice.

Mitinori Saitou 1, Bernhard Payer 1, Ulrike C Lange 1, Sylvia Erhardt 1, Sheila C Barton 1, M Azim Surani 1
PMCID: PMC1693230  PMID: 14511483

Abstract

An early fundamental event during development is the segregation of germ cells from somatic cells. In many organisms, this is accomplished by the inheritance of preformed germ plasm, which apparently imposes transcriptional repression to prevent somatic cell fate. However, in mammals, pluripotent epiblast cells acquire germ cell fate in response to signalling molecules. We have used single cell analysis to study how epiblast cells acquire germ cell competence and undergo specification. Germ cell competent cells express Fragilis and initially progress towards a somatic mesodermal fate. However, a subset of these cells, the future primordial germ cells (PGCs), then shows rapid upregulation of Fragilis with concomitant transcriptional repression of a number of genes, including Hox and Smad genes. This repression may be a key event associated with germ cell specification. Furthermore, PGCs express Stella and other genes, such as Oct-4 that are associated with pluripotency. While these molecules are also detected in mature oocytes as maternally inherited factors, their early role is to regulate development and maintain pluripotency, and they do not serve the role of classical germline determinants.

Full Text

The Full Text of this article is available as a PDF (630.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barnes J. D., Crosby J. L., Jones C. M., Wright C. V., Hogan B. L. Embryonic expression of Lim-1, the mouse homolog of Xenopus Xlim-1, suggests a role in lateral mesoderm differentiation and neurogenesis. Dev Biol. 1994 Jan;161(1):168–178. doi: 10.1006/dbio.1994.1018. [DOI] [PubMed] [Google Scholar]
  2. Bastian H., Gruss P. A murine even-skipped homologue, Evx 1, is expressed during early embryogenesis and neurogenesis in a biphasic manner. EMBO J. 1990 Jun;9(6):1839–1852. doi: 10.1002/j.1460-2075.1990.tb08309.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Batchelder C., Dunn M. A., Choy B., Suh Y., Cassie C., Shim E. Y., Shin T. H., Mello C., Seydoux G., Blackwell T. K. Transcriptional repression by the Caenorhabditis elegans germ-line protein PIE-1. Genes Dev. 1999 Jan 15;13(2):202–212. doi: 10.1101/gad.13.2.202. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. CHIQUOINE A. D. The identification, origin, and migration of the primordial germ cells in the mouse embryo. Anat Rec. 1954 Feb;118(2):135–146. doi: 10.1002/ar.1091180202. [DOI] [PubMed] [Google Scholar]
  5. Ciruna B. G., Rossant J. Expression of the T-box gene Eomesodermin during early mouse development. Mech Dev. 1999 Mar;81(1-2):199–203. doi: 10.1016/s0925-4773(98)00243-3. [DOI] [PubMed] [Google Scholar]
  6. Clark J. M., Eddy E. M. Fine structural observations on the origin and associations of primordial germ cells of the mouse. Dev Biol. 1975 Nov;47(1):136–155. doi: 10.1016/0012-1606(75)90269-9. [DOI] [PubMed] [Google Scholar]
  7. Crossley P. H., Martin G. R. The mouse Fgf8 gene encodes a family of polypeptides and is expressed in regions that direct outgrowth and patterning in the developing embryo. Development. 1995 Feb;121(2):439–451. doi: 10.1242/dev.121.2.439. [DOI] [PubMed] [Google Scholar]
  8. Downs K. M., Davies T. Staging of gastrulating mouse embryos by morphological landmarks in the dissecting microscope. Development. 1993 Aug;118(4):1255–1266. doi: 10.1242/dev.118.4.1255. [DOI] [PubMed] [Google Scholar]
  9. Eddy E. M. Germ plasm and the differentiation of the germ cell line. Int Rev Cytol. 1975;43:229–280. doi: 10.1016/s0074-7696(08)60070-4. [DOI] [PubMed] [Google Scholar]
  10. Evans M. J., Kaufman M. H. Establishment in culture of pluripotential cells from mouse embryos. Nature. 1981 Jul 9;292(5819):154–156. doi: 10.1038/292154a0. [DOI] [PubMed] [Google Scholar]
  11. Evans S. S., Collea R. P., Leasure J. A., Lee D. B. IFN-alpha induces homotypic adhesion and Leu-13 expression in human B lymphoid cells. J Immunol. 1993 Feb 1;150(3):736–747. [PubMed] [Google Scholar]
  12. Evans S. S., Lee D. B., Han T., Tomasi T. B., Evans R. L. Monoclonal antibody to the interferon-inducible protein Leu-13 triggers aggregation and inhibits proliferation of leukemic B cells. Blood. 1990 Dec 15;76(12):2583–2593. [PubMed] [Google Scholar]
  13. Faust C., Lawson K. A., Schork N. J., Thiel B., Magnuson T. The Polycomb-group gene eed is required for normal morphogenetic movements during gastrulation in the mouse embryo. Development. 1998 Nov;125(22):4495–4506. doi: 10.1242/dev.125.22.4495. [DOI] [PubMed] [Google Scholar]
  14. Friedman R. L., Manly S. P., McMahon M., Kerr I. M., Stark G. R. Transcriptional and posttranscriptional regulation of interferon-induced gene expression in human cells. Cell. 1984 Oct;38(3):745–755. doi: 10.1016/0092-8674(84)90270-8. [DOI] [PubMed] [Google Scholar]
  15. Frohman M. A., Boyle M., Martin G. R. Isolation of the mouse Hox-2.9 gene; analysis of embryonic expression suggests that positional information along the anterior-posterior axis is specified by mesoderm. Development. 1990 Oct;110(2):589–607. doi: 10.1242/dev.110.2.589. [DOI] [PubMed] [Google Scholar]
  16. Gardner R. L., Lyon M. F., Evans E. P., Burtenshaw M. D. Clonal analysis of X-chromosome inactivation and the origin of the germ line in the mouse embryo. J Embryol Exp Morphol. 1985 Aug;88:349–363. [PubMed] [Google Scholar]
  17. Gardner R. L., Rossant J. Investigation of the fate of 4-5 day post-coitum mouse inner cell mass cells by blastocyst injection. J Embryol Exp Morphol. 1979 Aug;52:141–152. [PubMed] [Google Scholar]
  18. Ginsburg M., Snow M. H., McLaren A. Primordial germ cells in the mouse embryo during gastrulation. Development. 1990 Oct;110(2):521–528. doi: 10.1242/dev.110.2.521. [DOI] [PubMed] [Google Scholar]
  19. Hancock S. N., Agulnik S. I., Silver L. M., Papaioannou V. E. Mapping and expression analysis of the mouse ortholog of Xenopus Eomesodermin. Mech Dev. 1999 Mar;81(1-2):205–208. doi: 10.1016/s0925-4773(98)00244-5. [DOI] [PubMed] [Google Scholar]
  20. Herrmann B. G. Expression pattern of the Brachyury gene in whole-mount TWis/TWis mutant embryos. Development. 1991 Nov;113(3):913–917. doi: 10.1242/dev.113.3.913. [DOI] [PubMed] [Google Scholar]
  21. Herrmann B. G., Labeit S., Poustka A., King T. R., Lehrach H. Cloning of the T gene required in mesoderm formation in the mouse. Nature. 1990 Feb 15;343(6259):617–622. doi: 10.1038/343617a0. [DOI] [PubMed] [Google Scholar]
  22. Laible G., Wolf A., Dorn R., Reuter G., Nislow C., Lebersorger A., Popkin D., Pillus L., Jenuwein T. Mammalian homologues of the Polycomb-group gene Enhancer of zeste mediate gene silencing in Drosophila heterochromatin and at S. cerevisiae telomeres. EMBO J. 1997 Jun 2;16(11):3219–3232. doi: 10.1093/emboj/16.11.3219. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Lange U. C., Saitou M., Western P. S., Barton S. C., Surani M. A. The fragilis interferon-inducible gene family of transmembrane proteins is associated with germ cell specification in mice. BMC Dev Biol. 2003 Mar 19;3:1–1. doi: 10.1186/1471-213X-3-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Lawson K. A., Dunn N. R., Roelen B. A., Zeinstra L. M., Davis A. M., Wright C. V., Korving J. P., Hogan B. L. Bmp4 is required for the generation of primordial germ cells in the mouse embryo. Genes Dev. 1999 Feb 15;13(4):424–436. doi: 10.1101/gad.13.4.424. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Lawson K. A., Hage W. J. Clonal analysis of the origin of primordial germ cells in the mouse. Ciba Found Symp. 1994;182:68–91. doi: 10.1002/9780470514573.ch5. [DOI] [PubMed] [Google Scholar]
  26. Lawson K. A., Meneses J. J., Pedersen R. A. Clonal analysis of epiblast fate during germ layer formation in the mouse embryo. Development. 1991 Nov;113(3):891–911. doi: 10.1242/dev.113.3.891. [DOI] [PubMed] [Google Scholar]
  27. Li En. Chromatin modification and epigenetic reprogramming in mammalian development. Nat Rev Genet. 2002 Sep;3(9):662–673. doi: 10.1038/nrg887. [DOI] [PubMed] [Google Scholar]
  28. Martin G. R. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci U S A. 1981 Dec;78(12):7634–7638. doi: 10.1073/pnas.78.12.7634. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. McLaren A. Signaling for germ cells. Genes Dev. 1999 Feb 15;13(4):373–376. doi: 10.1101/gad.13.4.373. [DOI] [PubMed] [Google Scholar]
  30. Nichols J., Zevnik B., Anastassiadis K., Niwa H., Klewe-Nebenius D., Chambers I., Schöler H., Smith A. Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell. 1998 Oct 30;95(3):379–391. doi: 10.1016/s0092-8674(00)81769-9. [DOI] [PubMed] [Google Scholar]
  31. O'Carroll D., Erhardt S., Pagani M., Barton S. C., Surani M. A., Jenuwein T. The polycomb-group gene Ezh2 is required for early mouse development. Mol Cell Biol. 2001 Jul;21(13):4330–4336. doi: 10.1128/MCB.21.13.4330-4336.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. O'Shea John J., Gadina Massimo, Schreiber Robert D. Cytokine signaling in 2002: new surprises in the Jak/Stat pathway. Cell. 2002 Apr;109 (Suppl):S121–S131. doi: 10.1016/s0092-8674(02)00701-8. [DOI] [PubMed] [Google Scholar]
  33. Orlando Valerio. Polycomb, epigenomes, and control of cell identity. Cell. 2003 Mar 7;112(5):599–606. doi: 10.1016/s0092-8674(03)00157-0. [DOI] [PubMed] [Google Scholar]
  34. Pesce M., Gross M. K., Schöler H. R. In line with our ancestors: Oct-4 and the mammalian germ. Bioessays. 1998 Sep;20(9):722–732. doi: 10.1002/(SICI)1521-1878(199809)20:9<722::AID-BIES5>3.0.CO;2-I. [DOI] [PubMed] [Google Scholar]
  35. Reid L. E., Brasnett A. H., Gilbert C. S., Porter A. C., Gewert D. R., Stark G. R., Kerr I. M. A single DNA response element can confer inducibility by both alpha- and gamma-interferons. Proc Natl Acad Sci U S A. 1989 Feb;86(3):840–844. doi: 10.1073/pnas.86.3.840. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Russ A. P., Wattler S., Colledge W. H., Aparicio S. A., Carlton M. B., Pearce J. J., Barton S. C., Surani M. A., Ryan K., Nehls M. C. Eomesodermin is required for mouse trophoblast development and mesoderm formation. Nature. 2000 Mar 2;404(6773):95–99. doi: 10.1038/35003601. [DOI] [PubMed] [Google Scholar]
  37. Saitou Mitinori, Barton Sheila C., Surani M. Azim. A molecular programme for the specification of germ cell fate in mice. Nature. 2002 Jul 18;418(6895):293–300. doi: 10.1038/nature00927. [DOI] [PubMed] [Google Scholar]
  38. Sato Masatake, Kimura Tohru, Kurokawa Ken, Fujita Yukiko, Abe Koichiro, Masuhara Masaaki, Yasunaga Teruo, Ryo Akihide, Yamamoto Mikio, Nakano Toru. Identification of PGC7, a new gene expressed specifically in preimplantation embryos and germ cells. Mech Dev. 2002 Apr;113(1):91–94. doi: 10.1016/s0925-4773(02)00002-3. [DOI] [PubMed] [Google Scholar]
  39. Seydoux G., Dunn M. A. Transcriptionally repressed germ cells lack a subpopulation of phosphorylated RNA polymerase II in early embryos of Caenorhabditis elegans and Drosophila melanogaster. Development. 1997 Jun;124(11):2191–2201. doi: 10.1242/dev.124.11.2191. [DOI] [PubMed] [Google Scholar]
  40. Seydoux G., Mello C. C., Pettitt J., Wood W. B., Priess J. R., Fire A. Repression of gene expression in the embryonic germ lineage of C. elegans. Nature. 1996 Aug 22;382(6593):713–716. doi: 10.1038/382713a0. [DOI] [PubMed] [Google Scholar]
  41. Seydoux G., Strome S. Launching the germline in Caenorhabditis elegans: regulation of gene expression in early germ cells. Development. 1999 Aug;126(15):3275–3283. doi: 10.1242/dev.126.15.3275. [DOI] [PubMed] [Google Scholar]
  42. Shumacher A., Faust C., Magnuson T. Positional cloning of a global regulator of anterior-posterior patterning in mice. Nature. 1996 Sep 19;383(6597):250–253. doi: 10.1038/383250a0. [DOI] [PubMed] [Google Scholar]
  43. Spiegelman M., Bennett D. A light- and electron-microscopic study of primordial germ cells in the early mouse embryo. J Embryol Exp Morphol. 1973 Aug;30(1):97–118. [PubMed] [Google Scholar]
  44. Tam P. P., Zhou S. X. The allocation of epiblast cells to ectodermal and germ-line lineages is influenced by the position of the cells in the gastrulating mouse embryo. Dev Biol. 1996 Aug 25;178(1):124–132. doi: 10.1006/dbio.1996.0203. [DOI] [PubMed] [Google Scholar]
  45. Van Doren M., Williamson A. L., Lehmann R. Regulation of zygotic gene expression in Drosophila primordial germ cells. Curr Biol. 1998 Feb 12;8(4):243–246. doi: 10.1016/s0960-9822(98)70091-0. [DOI] [PubMed] [Google Scholar]
  46. Wylie C. Germ cells. Cell. 1999 Jan 22;96(2):165–174. doi: 10.1016/s0092-8674(00)80557-7. [DOI] [PubMed] [Google Scholar]
  47. Yeom Y. I., Fuhrmann G., Ovitt C. E., Brehm A., Ohbo K., Gross M., Hübner K., Schöler H. R. Germline regulatory element of Oct-4 specific for the totipotent cycle of embryonal cells. Development. 1996 Mar;122(3):881–894. doi: 10.1242/dev.122.3.881. [DOI] [PubMed] [Google Scholar]
  48. Ying Y., Liu X. M., Marble A., Lawson K. A., Zhao G. Q. Requirement of Bmp8b for the generation of primordial germ cells in the mouse. Mol Endocrinol. 2000 Jul;14(7):1053–1063. doi: 10.1210/mend.14.7.0479. [DOI] [PubMed] [Google Scholar]

Articles from Philosophical Transactions of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES

  NODES
Association 1
twitter 2