Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1996 Aug;70(8):5487–5494. doi: 10.1128/jvi.70.8.5487-5494.1996

Cell type-specific fusion cofactors determine human immunodeficiency virus type 1 tropism for T-cell lines versus primary macrophages.

G Alkhatib 1, C C Broder 1, E A Berger 1
PMCID: PMC190506  PMID: 8764060

Abstract

Work in this laboratory previously demonstrated that the tropism of different human immunodeficiency type 1 isolates for infection of human CD4+ continuous cell lines (e.g., T-cell lines and HeLa-CD4 transformants) versus primary macrophages is associated with parallel intrinsic fusogenic specificities of the corresponding envelope glycoproteins (Envs). For T-cell line-tropic isolates, it is well established that the _target cell must also contain a human-specific fusion cofactor(s) whose identity is unknown. In this study, we tested the hypothesis that the Env fusion specificities underlying T-cell line versus macrophage tropism are determined by distinct cell type-specific fusion cofactors. We applied a recombinant vaccinia virus-based reporter gene assay for Env-CD4-mediated cell fusion; the LAV and Ba-L Envs served as prototypes for T-cell line-tropic and macrophage-tropic isolates, respectively. We examined CD4+ promyeloctic and monocytic cell lines that are infectible by T-cell line-tropic isolates and become susceptible to macrophage-tropic strains only after treatment with differentiating agents. We observed parallel changes in fusion specificity: untreated cells supported fusion by the LAV but not the Ba-L Env, whereas cells treated with differentiating agents acquired fusion competence for Ba-L. These results suggest that in untreated cells, the block to infection by macrophage-tropic isolates is at the level of membrane fusion; furthermore, the differential regulation of fusion permissiveness for the two classes of Envs is consistent with the existence of distinct fusion cofactors. To test this notion directly, we conducted experiments with transient cell hybrids formed between CD4-expressing nonhuman cells (murine NIH 3T3) and different human cell types. Hybrids formed with HeLa cells supported fusion by the LAV Env but not by the Ba-L Env, whereas hybrids formed with primary macrophages showed the opposite specificity; hybrids formed between HeLa cells and macrophages supported fusion by both Envs. These results suggest the existence of cell type-specific fusion cofactors selective for each type of Env, rather than fusion inhibitors for discordant Env-cell combinations. Finally, analyses based on recombinant protein expression and antibody blocking did not support the proposals by others that the CD44 or CD26 antigens are involved directly in the entry of macrophage-tropic isolates.

Full Text

The Full Text of this article is available as a PDF (747.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alexander W. A., Moss B., Fuerst T. R. Regulated expression of foreign genes in vaccinia virus under the control of bacteriophage T7 RNA polymerase and the Escherichia coli lac repressor. J Virol. 1992 May;66(5):2934–2942. doi: 10.1128/jvi.66.5.2934-2942.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Alizon M., Dragic T. CD26 antigen and HIV fusion? Science. 1994 May 20;264(5162):1161–1165. doi: 10.1126/science.7909962. [DOI] [PubMed] [Google Scholar]
  3. Alkhatib G., Combadiere C., Broder C. C., Feng Y., Kennedy P. E., Murphy P. M., Berger E. A. CC CKR5: a RANTES, MIP-1alpha, MIP-1beta receptor as a fusion cofactor for macrophage-tropic HIV-1. Science. 1996 Jun 28;272(5270):1955–1958. doi: 10.1126/science.272.5270.1955. [DOI] [PubMed] [Google Scholar]
  4. Ashorn P. A., Berger E. A., Moss B. Human immunodeficiency virus envelope glycoprotein/CD4-mediated fusion of nonprimate cells with human cells. J Virol. 1990 May;64(5):2149–2156. doi: 10.1128/jvi.64.5.2149-2156.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Broder C. C., Berger E. A. Fusogenic selectivity of the envelope glycoprotein is a major determinant of human immunodeficiency virus type 1 tropism for CD4+ T-cell lines vs. primary macrophages. Proc Natl Acad Sci U S A. 1995 Sep 12;92(19):9004–9008. doi: 10.1073/pnas.92.19.9004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Broder C. C., Dimitrov D. S., Blumenthal R., Berger E. A. The block to HIV-1 envelope glycoprotein-mediated membrane fusion in animal cells expressing human CD4 can be overcome by a human cell component(s). Virology. 1993 Mar;193(1):483–491. doi: 10.1006/viro.1993.1151. [DOI] [PubMed] [Google Scholar]
  7. Broder C. C., Kennedy P. E., Michaels F., Berger E. A. Expression of foreign genes in cultured human primary macrophages using recombinant vaccinia virus vectors. Gene. 1994 May 16;142(2):167–174. doi: 10.1016/0378-1119(94)90257-7. [DOI] [PubMed] [Google Scholar]
  8. Broder C. C., Nussbaum O., Gutheil W. G., Bachovchin W. W., Berger E. A. CD26 antigen and HIV fusion? Science. 1994 May 20;264(5162):1156–1165. doi: 10.1126/science.7909959. [DOI] [PubMed] [Google Scholar]
  9. Callebaut C., Krust B., Jacotot E., Hovanessian A. G. T cell activation antigen, CD26, as a cofactor for entry of HIV in CD4+ cells. Science. 1993 Dec 24;262(5142):2045–2050. doi: 10.1126/science.7903479. [DOI] [PubMed] [Google Scholar]
  10. Camerini D., Planelles V., Chen I. S. CD26 antigen and HIV fusion? Science. 1994 May 20;264(5162):1160–1165. doi: 10.1126/science.7909961. [DOI] [PubMed] [Google Scholar]
  11. Cann A. J., Zack J. A., Go A. S., Arrigo S. J., Koyanagi Y., Green P. L., Koyanagi Y., Pang S., Chen I. S. Human immunodeficiency virus type 1 T-cell tropism is determined by events prior to provirus formation. J Virol. 1990 Oct;64(10):4735–4742. doi: 10.1128/jvi.64.10.4735-4742.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Cheng-Mayer C., Quiroga M., Tung J. W., Dina D., Levy J. A. Viral determinants of human immunodeficiency virus type 1 T-cell or macrophage tropism, cytopathogenicity, and CD4 antigen modulation. J Virol. 1990 Sep;64(9):4390–4398. doi: 10.1128/jvi.64.9.4390-4398.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Chesebro B., Nishio J., Perryman S., Cann A., O'Brien W., Chen I. S., Wehrly K. Identification of human immunodeficiency virus envelope gene sequences influencing viral entry into CD4-positive HeLa cells, T-leukemia cells, and macrophages. J Virol. 1991 Nov;65(11):5782–5789. doi: 10.1128/jvi.65.11.5782-5789.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Chesebro B., Wehrly K., Nishio J., Perryman S. Macrophage-tropic human immunodeficiency virus isolates from different patients exhibit unusual V3 envelope sequence homogeneity in comparison with T-cell-tropic isolates: definition of critical amino acids involved in cell tropism. J Virol. 1992 Nov;66(11):6547–6554. doi: 10.1128/jvi.66.11.6547-6554.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Chowdhury I. H., Potash M. J., Volsky D. J. Redefinition of tropism of common macrophage-tropic human immunodeficiency virus type 1. AIDS Res Hum Retroviruses. 1995 Dec;11(12):1467–1471. doi: 10.1089/aid.1995.11.1467. [DOI] [PubMed] [Google Scholar]
  16. Clapham P. R., Blanc D., Weiss R. A. Specific cell surface requirements for the infection of CD4-positive cells by human immunodeficiency virus types 1 and 2 and by Simian immunodeficiency virus. Virology. 1991 Apr;181(2):703–715. doi: 10.1016/0042-6822(91)90904-P. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Connor R. I., Ho D. D. Transmission and pathogenesis of human immunodeficiency virus type 1. AIDS Res Hum Retroviruses. 1994 Apr;10(4):321–323. doi: 10.1089/aid.1994.10.321. [DOI] [PubMed] [Google Scholar]
  18. Dragic T., Alizon M. Different requirements for membrane fusion mediated by the envelopes of human immunodeficiency virus types 1 and 2. J Virol. 1993 Apr;67(4):2355–2359. doi: 10.1128/jvi.67.4.2355-2359.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Dragic T., Charneau P., Clavel F., Alizon M. Complementation of murine cells for human immunodeficiency virus envelope/CD4-mediated fusion in human/murine heterokaryons. J Virol. 1992 Aug;66(8):4794–4802. doi: 10.1128/jvi.66.8.4794-4802.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Dragic T., Picard L., Alizon M. Proteinase-resistant factors in human erythrocyte membranes mediate CD4-dependent fusion with cells expressing human immunodeficiency virus type 1 envelope glycoproteins. J Virol. 1995 Feb;69(2):1013–1018. doi: 10.1128/jvi.69.2.1013-1018.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Dukes C. S., Yu Y., Rivadeneira E. D., Sauls D. L., Liao H. X., Haynes B. F., Weinberg J. B. Cellular CD44S as a determinant of human immunodeficiency virus type 1 infection and cellular tropism. J Virol. 1995 Jul;69(7):4000–4005. doi: 10.1128/jvi.69.7.4000-4005.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Elroy-Stein O., Fuerst T. R., Moss B. Cap-independent translation of mRNA conferred by encephalomyocarditis virus 5' sequence improves the performance of the vaccinia virus/bacteriophage T7 hybrid expression system. Proc Natl Acad Sci U S A. 1989 Aug;86(16):6126–6130. doi: 10.1073/pnas.86.16.6126. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Feng Y., Broder C. C., Kennedy P. E., Berger E. A. HIV-1 entry cofactor: functional cDNA cloning of a seven-transmembrane, G protein-coupled receptor. Science. 1996 May 10;272(5263):872–877. doi: 10.1126/science.272.5263.872. [DOI] [PubMed] [Google Scholar]
  24. Fuerst T. R., Niles E. G., Studier F. W., Moss B. Eukaryotic transient-expression system based on recombinant vaccinia virus that synthesizes bacteriophage T7 RNA polymerase. Proc Natl Acad Sci U S A. 1986 Nov;83(21):8122–8126. doi: 10.1073/pnas.83.21.8122. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Groenink M., Fouchier R. A., de Goede R. E., de Wolf F., Gruters R. A., Cuypers H. T., Huisman H. G., Tersmette M. Phenotypic heterogeneity in a panel of infectious molecular human immunodeficiency virus type 1 clones derived from a single individual. J Virol. 1991 Apr;65(4):1968–1975. doi: 10.1128/jvi.65.4.1968-1975.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Harrington R. D., Geballe A. P. Cofactor requirement for human immunodeficiency virus type 1 entry into a CD4-expressing human cell line. J Virol. 1993 Oct;67(10):5939–5947. doi: 10.1128/jvi.67.10.5939-5947.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Hirsch V. M., Martin J. E., Dapolito G., Elkins W. R., London W. T., Goldstein S., Johnson P. R. Spontaneous substitutions in the vicinity of the V3 analog affect cell tropism and pathogenicity of simian immunodeficiency virus. J Virol. 1994 Apr;68(4):2649–2661. doi: 10.1128/jvi.68.4.2649-2661.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Huang Z. B., Potash M. J., Simm M., Shahabuddin M., Chao W., Gendelman H. E., Eden E., Volsky D. J. Infection of macrophages with lymphotropic human immunodeficiency virus type 1 can be arrested after viral DNA synthesis. J Virol. 1993 Nov;67(11):6893–6896. doi: 10.1128/jvi.67.11.6893-6896.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Hwang S. S., Boyle T. J., Lyerly H. K., Cullen B. R. Identification of the envelope V3 loop as the primary determinant of cell tropism in HIV-1. Science. 1991 Jul 5;253(5015):71–74. doi: 10.1126/science.1905842. [DOI] [PubMed] [Google Scholar]
  30. Kirchhoff F., Mori K., Desrosiers R. C. The "V3" domain is a determinant of simian immunodeficiency virus cell tropism. J Virol. 1994 Jun;68(6):3682–3692. doi: 10.1128/jvi.68.6.3682-3692.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Kitano K., Baldwin G. C., Raines M. A., Golde D. W. Differentiating agents facilitate infection of myeloid leukemia cell lines by monocytotropic HIV-1 strains. Blood. 1990 Nov 15;76(10):1980–1988. [PubMed] [Google Scholar]
  32. Lazdins J. K., Woods-Cook K., Walker M., Alteri E. The lipophilic muramyl peptide MTP-PE is a potent inhibitor of HIV replication in macrophages. AIDS Res Hum Retroviruses. 1990 Oct;6(10):1157–1161. doi: 10.1089/aid.1990.6.1157. [DOI] [PubMed] [Google Scholar]
  33. Maddon P. J., Dalgleish A. G., McDougal J. S., Clapham P. R., Weiss R. A., Axel R. The T4 gene encodes the AIDS virus receptor and is expressed in the immune system and the brain. Cell. 1986 Nov 7;47(3):333–348. doi: 10.1016/0092-8674(86)90590-8. [DOI] [PubMed] [Google Scholar]
  34. Meylan P. R., Spina C. A., Richman D. D., Kornbluth R. S. In vitro differentiation of monocytoid THP-1 cells affects their permissiveness for HIV strains: a model system for studying the cellular basis of HIV differential tropism. Virology. 1993 Mar;193(1):256–267. doi: 10.1006/viro.1993.1121. [DOI] [PubMed] [Google Scholar]
  35. Miedema F., Meyaard L., Koot M., Klein M. R., Roos M. T., Groenink M., Fouchier R. A., Van't Wout A. B., Tersmette M., Schellekens P. T. Changing virus-host interactions in the course of HIV-1 infection. Immunol Rev. 1994 Aug;140:35–72. doi: 10.1111/j.1600-065x.1994.tb00864.x. [DOI] [PubMed] [Google Scholar]
  36. Mori K., Ringler D. J., Desrosiers R. C. Restricted replication of simian immunodeficiency virus strain 239 in macrophages is determined by env but is not due to restricted entry. J Virol. 1993 May;67(5):2807–2814. doi: 10.1128/jvi.67.5.2807-2814.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Moss B., Elroy-Stein O., Mizukami T., Alexander W. A., Fuerst T. R. Product review. New mammalian expression vectors. Nature. 1990 Nov 1;348(6296):91–92. doi: 10.1038/348091a0. [DOI] [PubMed] [Google Scholar]
  38. Nussbaum O., Broder C. C., Berger E. A. Fusogenic mechanisms of enveloped-virus glycoproteins analyzed by a novel recombinant vaccinia virus-based assay quantitating cell fusion-dependent reporter gene activation. J Virol. 1994 Sep;68(9):5411–5422. doi: 10.1128/jvi.68.9.5411-5422.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Nussbaum O., Broder C. C., Moss B., Stern L. B., Rozenblatt S., Berger E. A. Functional and structural interactions between measles virus hemagglutinin and CD46. J Virol. 1995 Jun;69(6):3341–3349. doi: 10.1128/jvi.69.6.3341-3349.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. O'Brien W. A., Koyanagi Y., Namazie A., Zhao J. Q., Diagne A., Idler K., Zack J. A., Chen I. S. HIV-1 tropism for mononuclear phagocytes can be determined by regions of gp120 outside the CD4-binding domain. Nature. 1990 Nov 1;348(6296):69–73. doi: 10.1038/348069a0. [DOI] [PubMed] [Google Scholar]
  41. Oravecz T., Roderiquez G., Koffi J., Wang J., Ditto M., Bou-Habib D. C., Lusso P., Norcross M. A. CD26 expression correlates with entry, replication and cytopathicity of monocytotropic HIV-1 strains in a T-cell line. Nat Med. 1995 Sep;1(9):919–926. doi: 10.1038/nm0995-919. [DOI] [PubMed] [Google Scholar]
  42. Patience C., McKnight A., Clapham P. R., Boyd M. T., Weiss R. A., Schulz T. F. CD26 antigen and HIV fusion? Science. 1994 May 20;264(5162):1159–1165. doi: 10.1126/science.7909960. [DOI] [PubMed] [Google Scholar]
  43. Potash M. J., Zeira M., Huang Z. B., Pearce T. E., Eden E., Gendelman H. E., Volsky D. J. Virus-cell membrane fusion does not predict efficient infection of alveolar macrophages by human immunodeficiency virus type 1 (HIV-1). Virology. 1992 Jun;188(2):864–868. doi: 10.1016/0042-6822(92)90543-x. [DOI] [PubMed] [Google Scholar]
  44. Ramarli D., Cambiaggi C., De Giuli Morghen C., Tripputi P., Ortolani R., Bolzanelli M., Tridente G., Accolla R. S. Susceptibility of human-mouse T cell hybrids to HIV-productive infection. AIDS Res Hum Retroviruses. 1993 Dec;9(12):1269–1275. doi: 10.1089/aid.1993.9.1269. [DOI] [PubMed] [Google Scholar]
  45. Rivadeneira E. D., Sauls D. L., Yu Y., Haynes B. F., Weinberg J. B. Inhibition of HIV type 1 infection of mononuclear phagocytes by anti-CD44 antibodies. AIDS Res Hum Retroviruses. 1995 May;11(5):541–546. doi: 10.1089/aid.1995.11.541. [DOI] [PubMed] [Google Scholar]
  46. Schmidtmayerova H., Bolmont C., Baghdiguian S., Hirsch I., Chermann J. C. Distinctive pattern of infection and replication of HIV1 strains in blood-derived macrophages. Virology. 1992 Sep;190(1):124–133. doi: 10.1016/0042-6822(92)91198-4. [DOI] [PubMed] [Google Scholar]
  47. Schuitemaker H., Groenink M., Meyaard L., Kootstra N. A., Fouchier R. A., Gruters R. A., Huisman H. G., Tersmette M., Miedema F. Early replication steps but not cell type-specific signalling of the viral long terminal repeat determine HIV-1 monocytotropism. AIDS Res Hum Retroviruses. 1993 Jul;9(7):669–675. doi: 10.1089/aid.1993.9.669. [DOI] [PubMed] [Google Scholar]
  48. Shioda T., Levy J. A., Cheng-Mayer C. Macrophage and T cell-line tropisms of HIV-1 are determined by specific regions of the envelope gp120 gene. Nature. 1991 Jan 10;349(6305):167–169. doi: 10.1038/349167a0. [DOI] [PubMed] [Google Scholar]
  49. Stamenkovic I., Amiot M., Pesando J. M., Seed B. A lymphocyte molecule implicated in lymph node homing is a member of the cartilage link protein family. Cell. 1989 Mar 24;56(6):1057–1062. doi: 10.1016/0092-8674(89)90638-7. [DOI] [PubMed] [Google Scholar]
  50. Stamenkovic I., Aruffo A., Amiot M., Seed B. The hematopoietic and epithelial forms of CD44 are distinct polypeptides with different adhesion potentials for hyaluronate-bearing cells. EMBO J. 1991 Feb;10(2):343–348. doi: 10.1002/j.1460-2075.1991.tb07955.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Stevenson M., Gendelman H. E. Cellular and viral determinants that regulate HIV-1 infection in macrophages. J Leukoc Biol. 1994 Sep;56(3):278–288. doi: 10.1002/jlb.56.3.278. [DOI] [PubMed] [Google Scholar]
  52. Valentin A., Albert J., Fenyö E. M., Asjö B. Dual tropism for macrophages and lymphocytes is a common feature of primary human immunodeficiency virus type 1 and 2 isolates. J Virol. 1994 Oct;68(10):6684–6689. doi: 10.1128/jvi.68.10.6684-6689.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Weiner D. B., Huebner K., Williams W. V., Greene M. I. Human genes other than CD4 facilitate HIV-1 infection of murine cells. Pathobiology. 1991;59(6):361–371. doi: 10.1159/000163679. [DOI] [PubMed] [Google Scholar]
  54. Westervelt P., Gendelman H. E., Ratner L. Identification of a determinant within the human immunodeficiency virus 1 surface envelope glycoprotein critical for productive infection of primary monocytes. Proc Natl Acad Sci U S A. 1991 Apr 15;88(8):3097–3101. doi: 10.1073/pnas.88.8.3097. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES

  NODES
twitter 2