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ABSTRACT

Summary: METAL provides a computationally efficient tool for meta-
analysis of genome-wide association scans, which is a commonly
used approach for improving power complex traits gene mapping
studies. METAL provides a rich scripting interface and implements
efficient memory management to allow analyses of very large data
sets and to support a variety of input file formats.
Availability and implementation: METAL, including source code,
documentation, examples, and executables, is available at http://
www.sph.umich.edu/csg/abecasis/metal/
Contact: goncalo@umich.edu
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1 INTRODUCTION
Meta-analysis is becoming an increasingly important tool in
genome-wide association studies (GWAS) of complex genetic
diseases and traits (de Bakker et al., 2008). Meta-analysis provides
an efficient and practical strategy for detecting variants with modest
effect sizes (Skol et al., 2007). We, and others, have used METAL
for performing meta-analysis of GWAS to identify loci reproducibly
associated with a variety of traits, such as type 2 diabetes (Scott et al.,
2007; Zeggini et al., 2008), lipid levels (Kathiresan et al., 2008,
2009; Willer et al., 2008), BMI (Willer et al., 2009), blood pressure
(Newton-Cheh et al., 2009) and fasting glucose levels (Prokopenko
et al., 2009).

Meta-analysis of genome-wide association summary statistics,
in contrast to direct analysis of pooled individual-level data,
alleviates common concerns with privacy of study participants
and avoids cumbersome integration of genotype and phenotypic
data from different studies. Meta-analysis allows for custom
analyses of individual studies to conveniently account for population
substructure, the presence of related individuals, study-specific
covariates and many other ascertainment-related issues. It has been
shown that meta-analysis of summary statistics is as efficient (in
terms of statistical power) as pooling individual-level data across
studies, but much less cumbersome (Lin and Zeng, 2009). Since
GWAS routinely examine evidence for association at millions
of directly genotyped and imputed SNPs across dozens or even
hundreds of individual studies, it is important to use a fast and
flexible tool to perform meta-analysis.
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Table 1. Formulae for meta-analysis

Analytical strategy

Sample size based Inverse variance based

Inputs Ni - sample size for study i βi- effect size estimate
for study iPi −P-value for study i

�i - direction of effect for
study i

sei - standard error for
study i

Intermediate
Statistics
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i

Z =β/SE

Overall P-value P=2�(|−Z|)

2 METHODS
The basic principle of meta-analysis is to combine the evidence for
association from individual studies, using appropriate weights. METAL
implements two approaches. The first approach converts the direction of
effect and P-value observed in each study into a signed Z-score such that
very negative Z-scores indicate a small P-value and an allele associated with
lower disease risk or quantitative trait levels, whereas large positive Z-scores
indicate a small P-value and an allele associated with higher disease risk or
quantitative trait levels. Z-scores for each allele are combined across samples
in a weighted sum, with weights proportional to the square-root of the sample
size for each study (Stouffer et al., 1949). In a study with unequal numbers of
cases and controls, we recommend that the effective sample size be provided
in the input file, where Neff =4/(1/Ncases +1/Nctrls). This approach is very
flexible and allows results to be combined even when effect size estimates are
not available or the β-coefficients and standard errors from individual studies
are in different units. The second approach implemented in METAL weights
the effect size estimates, or β-coefficients, by their estimated standard errors.
This second approach requires effect size estimates and their standard errors
to be in consistent units across studies. Asymptotically, the two approaches
are equivalent when the trait distribution is identical across samples (such
that standard errors are a predictable function of sample size). Key formulae
for both approaches are in Table 1.

3 RESULTS

3.1 Implementation
In implementing our software for meta-analysis, a primary
consideration was to facilitate identification and resolution of
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common problems in meta-analysis. A secondary consideration was
the ability to specify custom headers and delimiters so as to combine
input files with varying formats generated from a variety of statistical
packages. METAL tries to resolve or flag common problems that
result from an inconsistent choice of allele labels or genomic strand
across studies, or the presence of invalid P-values or test statistics
at a subset of markers (due to numerical errors). METAL allows
data to be filtered according to quality control measures, and can
handle very large data sets (that typically total several GB in size)
in workstations with a memory capacity not exceeding 2 GB.

3.2 Usage
METAL has been used extensively by many groups since its initial
release in January 2008. This field testing enabled not only thorough
debugging but improvements in error-detection methods. METAL
can be run interactively or with a command script as input. Input
files are processed one at a time and used to update intermediate
statistics stored in memory. METAL implements Cochran’s Q-test
for heterogeneity (Cochran, 1954) and the appropriate statistics can
be calculated if requested by the user. METAL was designed for
flexible formatting of input files, and allows users to customize labels
for key columns, input field delimiters and other characteristics of
each input file. Information on genomic strand is used, if available,
and—when it is unavailable—METAL automatically resolves strand
mismatches for markers where strand is obvious (e.g. all SNPs
except those with A/T and C/G alleles). METAL has an option to
estimate a genomic control parameter (Devlin and Roeder, 1999) for
each input file and apply an appropriate genomic control correction
to input statistics prior to performing meta-analysis. To facilitate
the detection of allele labels that may have been mis-specified
by the user, which is critical for the correct determination of the
direction of effect, METAL implements an option to output the
mean, variance and minimum and maximum allele frequencies for
each marker. METAL will track custom statistics, such as cumulative
sample size, even when the standard error-weighted meta-analysis
was performed. METAL can read gzipped files to allow for efficient
use of disk space and optionally allows for subsets of markers
to be analyzed. Full documentation of all options is available at
http://www.sph.umich.edu/csg/abecasis/metal/.

3.3 Performance
METAL was written in C++ and is freely available for download.
METAL compiles and runs on most Unix and Linux systems,
and on Windows and Mac workstations. We recently performed
a meta-analysis of GWAS for BMI (Willer et al., 2009). The
analysis included 15 studies, each with association statistics at
2.2–2.5 million SNPs (average file size 225 MB), for a total of
36 million association statistics and a set of input files totaling
3.4 GB. This analysis required <6 min computing time and 790 MB

of memory on a 2.83 GHz Intel processor. Runtime scales linearly
with the number of studies examined—a meta-analysis including
74 input files (each with >2.5 m SNPs) took 36 min and 1 GB of
memory.
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