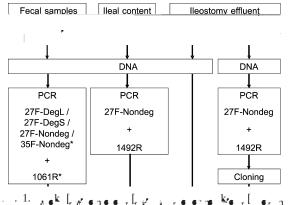
$$\begin{array}{c} \mathbf{x}_{1} \mathbf{x}_{1} \mathbf{y}_{1} \mathbf{y}$$


TI Food and Nutrition, P.O. Box 557, 6700 AN Wageningen, Netherlands¹; Laboratory of Microbiology, Wageningen University, Dreijenplein 10, 6703 HB Wageningen, Netherlands²; Department of Basic Veterinary Medicine, Division of Microbiology and Epidemiology, University of Helsinki, Helsinki, Finland³; and NIZO food research B.V., P.O. Box 20, 6710 BA Ede, Netherlands⁴

€ æ tê 20 _{ðr k} € 2010/ ∂∂€ ŋ€ 14¶[[. 2011

Large-scale and in-depth characterization of the intestinal microbiota necessitates application of highthroughput 16S rRNA gene-based technologies, such as barcoded pyrosequencing and phylogenetic microarray analysis. In this study, the two techniques were compared and contrasted for analysis of the bacterial composition in three fecal and three small intestinal samples from human individuals. As PCR remains a crucial step in sample preparation for both techniques, different forward primers were used for amplification to assess their impact on microbial profiling results. An average of 7,944 pyrosequences, spanning the V1 and V2 region of 16S rRNA genes, was obtained per sample. Although primer choice in barcoded pyrosequencing did not affect species richness and diversity estimates, detection of Actinobacteria strongly depended on the selected primer. Microbial profiles obtained by pyrosequencing and phylogenetic microarray analysis (HITChip) correlated strongly for fecal and ileal lumen samples but were less concordant for ileostomy effluent. Quantitative PCR was employed to investigate the deviations in profiling between pyrosequencing and HITChip analysis. Since cloning and sequencing of random 16S rRNA genes from ileostomy effluent confirmed the presence of novel intestinal phylotypes detected by pyrosequencing, especially those belonging to the Veillonella group, the divergence between pyrosequencing and the HITChip is likely due to the relatively low number of available 16S rRNA gene sequences of small intestinal origin in the DNA databases that were used for HITChip probe design. Overall, this study demonstrated that equivalent biological conclusions are obtained by high-throughput profiling of microbial communities, independent of technology or primer choice.

 $\begin{bmatrix} f & f & f \\ f & f & f \end{bmatrix} \begin{bmatrix} f & f \\ f & f \\$ (3 n k 40

 Image: A state of the stat

<u>t</u>. . .

L 🔊 eal kas for sakka [6 k 🛃 -* n 1 's le enge 75 1 7 s l n á k |, 7 6 ð n* 1 🖲 ale + erkretlr k' 🖌 👔 👘 L-1 6 [k [. a) , [- e e e e i , [lnn 4 -6 3 1 4 · [k i , wells L 🕷 👔 /lake m ke e a - [[] - i • • + * k + i [[- , • $\begin{array}{c} \mathbf{k} \begin{bmatrix} \mathbf{y}_{\mathbf{0}} & \mathbf{y}_{\mathbf{1}} \end{bmatrix}_{\mathbf{r}} \begin{bmatrix} \mathbf{y}_{\mathbf{0}} & \mathbf{y}_{\mathbf{1}} \end{bmatrix}_{\mathbf{r}} \begin{pmatrix} \mathbf{z} & \mathbf{z} \\ \mathbf{z} \end{bmatrix}_{\mathbf{r}} \end{pmatrix}_{\mathbf{r}} \begin{pmatrix} \mathbf{z} & \mathbf{z} \\ \mathbf{z} \end{bmatrix}_{\mathbf{r}} \begin{pmatrix} \mathbf{z} & \mathbf{z} \\ \mathbf{z} \end{bmatrix}_{\mathbf{r}} \begin{pmatrix} \mathbf{z} & \mathbf{z} \\ \mathbf{z} \end{bmatrix}_{\mathbf{r}} \end{pmatrix}_{\mathbf{r}} \end{pmatrix}_{\mathbf{r}} \begin{pmatrix} \mathbf{z} & \mathbf{z} \\ \mathbf{z} \end{bmatrix}_{\mathbf{r}} \end{pmatrix}_{\mathbf{r}} \end{pmatrix}_{\mathbf{r}} \begin{pmatrix} \mathbf{z} & \mathbf{z} \\ \mathbf{z} \end{bmatrix}_{\mathbf{r}} \end{pmatrix}_{\mathbf{r}} \end{pmatrix}_{\mathbf{r}} \begin{pmatrix} \mathbf{z} & \mathbf{z} \\ \mathbf{z} \\ \mathbf{z} \end{bmatrix}_{\mathbf{r}} \end{pmatrix}_{\mathbf{r}} \end{pmatrix}_{\mathbf{r}} \begin{pmatrix} \mathbf{z} & \mathbf{z} \\ \mathbf{z} \\ \mathbf{z} \end{bmatrix}_{\mathbf{r}} \end{pmatrix}_{\mathbf{r}} \end{pmatrix}_{\mathbf{r}} \end{pmatrix}_{\mathbf{r}} \end{pmatrix}_{\mathbf{r}} \begin{pmatrix} \mathbf{z} & \mathbf{z} \\ \mathbf{z} \\ \mathbf{z} \end{bmatrix}_{\mathbf{r}} \end{pmatrix}_{\mathbf{r}} \end{pmatrix}_{\mathbf{r}} \end{pmatrix}_{\mathbf{r}} \begin{pmatrix} \mathbf{z} & \mathbf{z} \\ \mathbf{z} \\ \mathbf{z} \end{bmatrix}_{\mathbf{r}} \end{pmatrix}_{\mathbf{r}} \end{pmatrix}_{\mathbf{r}} \end{pmatrix}_{\mathbf{r}} \begin{pmatrix} \mathbf{z} & \mathbf{z} \\ \mathbf{z} \\ \mathbf{z} \end{bmatrix}_{\mathbf{r}} \end{pmatrix}_{\mathbf{r}} \end{pmatrix}_{\mathbf{r}} \end{pmatrix}_{\mathbf{r}} \end{pmatrix}_{\mathbf{r}} \end{pmatrix}_{\mathbf{r}} \begin{pmatrix} \mathbf{z} & \mathbf{z} \\ \mathbf{z} \\ \mathbf{z} \end{bmatrix}_{\mathbf{r}} \end{pmatrix}_{\mathbf{r}} \end{pmatrix}_{\mathbf{r}} \end{pmatrix}_{\mathbf{r}} \end{pmatrix}_{\mathbf{r}} \end{pmatrix}_{\mathbf{r}} \end{pmatrix}_{\mathbf{r}} \end{pmatrix}_{\mathbf{r}} \begin{pmatrix} \mathbf{z} & \mathbf{z} \\ \mathbf{z} \\ \mathbf{z} \end{bmatrix} \end{pmatrix}_{\mathbf{r}} \begin{pmatrix} \mathbf{z} & \mathbf{z} \\ \mathbf{z} \\ \mathbf{z} \end{bmatrix} \end{pmatrix}_{\mathbf{r}} \end{pmatrix}_{\mathbf{r}} \end{pmatrix}_{\mathbf{r}} \end{pmatrix}_{\mathbf{r}} \end{pmatrix}_{\mathbf{r}} \end{pmatrix}_{\mathbf{r}} \end{pmatrix}_{\mathbf{r}}$ e ar let le rile ererere n- 1 • . ∱7 ₿ k_{€ k} k . 81 784

MATERIALS AND METHODS

Sample collection. $\begin{bmatrix} k \\ j \\ k \end{bmatrix} \begin{bmatrix} k \\ k \end{bmatrix} \begin{bmatrix} k \\ k \end{bmatrix} \begin{bmatrix} k \\ k \\ k \end{bmatrix} \begin{bmatrix} k \\ k \end{bmatrix} \end{bmatrix} \begin{bmatrix} k \\ k \end{bmatrix} \end{bmatrix} \begin{bmatrix} k \\ k \end{bmatrix} \begin{bmatrix} k \\ k \end{bmatrix} \begin{bmatrix} k \\ k \end{bmatrix} \end{bmatrix} \begin{bmatrix} k \\ k \end{bmatrix} \begin{bmatrix} k \\ k \end{bmatrix} \begin{bmatrix} k \\ k \end{bmatrix} \end{bmatrix} \begin{bmatrix} k \\ k \end{bmatrix} \begin{bmatrix} k \\ k \end{bmatrix} \begin{bmatrix} k \\ k \end{bmatrix} \end{bmatrix} \begin{bmatrix} k \\ k \end{bmatrix} \begin{bmatrix} k \\ k \end{bmatrix} \end{bmatrix} \begin{bmatrix} k \\ k \end{bmatrix} \end{bmatrix} \begin{bmatrix} k \\ k \end{bmatrix} \begin{bmatrix} k \\ k \end{bmatrix} \end{bmatrix} \end{bmatrix} \begin{bmatrix} k \\ k \end{bmatrix} \end{bmatrix} \end{bmatrix} \begin{bmatrix} k \\ k \end{bmatrix} \end{bmatrix} \begin{bmatrix} k \\ k \end{bmatrix} \end{bmatrix} \end{bmatrix} \begin{bmatrix} k \\ k \end{bmatrix} \end{bmatrix} \begin{bmatrix} k \\ k \end{bmatrix} \end{bmatrix} \begin{bmatrix} k \\ k \end{bmatrix} \end{bmatrix} \end{bmatrix} \begin{bmatrix} k \\ k \end{bmatrix} \end{bmatrix} \begin{bmatrix} k \\ k \end{bmatrix} \end{bmatrix} \end{bmatrix} \begin{bmatrix} k \\ k \end{bmatrix} \end{bmatrix} \begin{bmatrix} k \\ k \end{bmatrix} \end{bmatrix} \begin{bmatrix} k \\ k \end{bmatrix} \end{bmatrix} \end{bmatrix} \begin{bmatrix} k \\ k \end{bmatrix} \end{bmatrix} \begin{bmatrix} k \\ k \end{bmatrix} \end{bmatrix} \end{bmatrix} \begin{bmatrix} k \\ k \end{bmatrix} \end{bmatrix} \begin{bmatrix} k \\ k \end{bmatrix} \end{bmatrix} \end{bmatrix} \begin{bmatrix} k \\ k \end{bmatrix} \end{bmatrix} \end{bmatrix} \begin{bmatrix} k \\ k \end{bmatrix} \end{bmatrix} \end{bmatrix}$ • • • • (). $\mathbf{L}_{\mathbf{r}} = \left[\begin{array}{c} \mathbf{r} \\ \mathbf{r} \\$ $\begin{array}{c} i \quad j \quad i' \quad j' \quad i' \\ j \quad i \quad \mathbf{0} \quad [j' = 0, \mathbf{B}. \\ \mathbf{Rect} \end{array}$

Bacterial reference strains and culture conditions. Bifidobacterium longum $\begin{bmatrix} y & 2021 \\ y & 2021 \end{bmatrix} \begin{bmatrix} x & y & k \\ y & k & k \end{bmatrix} \begin{bmatrix} y & y & k \\ y & y & k \end{bmatrix} \begin{bmatrix} y & y & k \\ y & y & k \end{bmatrix} \begin{bmatrix} y & y & k \\ y & y & k \end{bmatrix} \begin{bmatrix} y & y & k \\ y & y & k \end{bmatrix} \begin{bmatrix} y & y & y & k \\ y & y & k \end{bmatrix} \begin{bmatrix} y & y & y & k \\ y & y & k \end{bmatrix} \begin{bmatrix} y & y & y & k \\ y & y & k \end{bmatrix} \begin{bmatrix} y & y & y & k \\ y & y & k \end{bmatrix} \begin{bmatrix} y & y & y & k \\ y & y & k \end{bmatrix} \begin{bmatrix} y & y & y & k \\ y & y & k \end{bmatrix} \begin{bmatrix} y & y & y & k \\ y & y & k \end{bmatrix} \begin{bmatrix} y & y & y & k \\ y & y & k \end{bmatrix} \begin{bmatrix} y & y & y & y \\ y & y & k \end{bmatrix} \begin{bmatrix} y & y & y & y \\ y & y & k \end{bmatrix} \begin{bmatrix} y & y & y & y \\ y & y & k \end{bmatrix} \begin{bmatrix} y & y & y & y \\ y & y & y \end{bmatrix} \end{bmatrix} \begin{bmatrix} y & y & y & y \\ y & y & y$ $(\bullet_{a_1} \bullet_{a_2})_{11} \bullet_{a_2} \bullet_{a_2} 0. \% (t_1) \bullet_{a_1} \bullet (k [) [, 3] B.$

Veillonella atypica (\mathbf{k} 203) [Veillonella \mathbf{k} $\mathbf{$

DNA extraction. $_{i}k_{i} \neq 1$ $(1) = _{i} = _$

 $\begin{array}{c} \underset{i_{T}}{\overset{}{\underset{}}} = \mathbf{I} \quad \begin{bmatrix} \mathbf{e}_{-T} & \begin{bmatrix} \mathbf{e}_{i_{T}} & \mathbf{k} & \mathbf{0}.2 & \mathbf{e}_{i_{T}} \end{bmatrix} \begin{bmatrix} \mathbf{k}_{-1} \mathbf{e} & \begin{bmatrix} 0.2 & \mathbf{k} & \mathbf{e}_{i_{T}} & \mathbf{e}_{i_{T}} \end{bmatrix} \\ \underset{i_{T}}{\overset{}{\underset{}}} = \mathbf{e}_{i_{T}} \begin{bmatrix} \mathbf{e}_{i_{T}} & \mathbf{e}_{i_{T}} & \mathbf{k} & \mathbf{e}_{i_{T}} \end{bmatrix} \\ \underset{i_{T}}{\overset{}{\underset{}}} = \mathbf{e}_{i_{T}} \begin{bmatrix} \mathbf{e}_{i_{T}} & \mathbf{e}_{i_{T}} & \mathbf{e}_{i_{T}} \end{bmatrix} \\ \underset{i_{T}}{\overset{}{\underset{}}} = \mathbf{e}_{i_{T}} \begin{bmatrix} \mathbf{e}_{i_{T}} & \mathbf{e}_{i_{T}} & \mathbf{e}_{i_{T}} \end{bmatrix} \\ \underset{i_{T}}{\overset{}{\underset{}}} = \mathbf{e}_{i_{T}} \begin{bmatrix} \mathbf{e}_{i_{T}} & \mathbf{e}_{i_{T}} & \mathbf{e}_{i_{T}} \end{bmatrix} \\ \underset{i_{T}}{\overset{}{\underset{}}} = \mathbf{e}_{i_{T}} \begin{bmatrix} \mathbf{e}_{i_{T}} & \mathbf{e}_{i_{T}} & \mathbf{e}_{i_{T}} \end{bmatrix} \\ \underset{i_{T}}{\overset{}{\underset{}}} = \mathbf{e}_{i_{T}} \begin{bmatrix} \mathbf{e}_{i_{T}} & \mathbf{e}_{i_{T}} & \mathbf{e}_{i_{T}} \end{bmatrix} \\ \underset{i_{T}}{\overset{}{\underset{}}} = \mathbf{e}_{i_{T}} \begin{bmatrix} \mathbf{e}_{i_{T}} & \mathbf{e}_{i_{T}} & \mathbf{e}_{i_{T}} \end{bmatrix} \\ \underset{i_{T}}{\overset{}{\underset{}}} = \mathbf{e}_{i_{T}} \begin{bmatrix} \mathbf{e}_{i_{T}} & \mathbf{e}_{i_{T}} & \mathbf{e}_{i_{T}} \end{bmatrix} \\ \underset{i_{T}}{\overset{}{\underset{}}} = \mathbf{e}_{i_{T}} \begin{bmatrix} \mathbf{e}_{i_{T}} & \mathbf{e}_{i_{T}} & \mathbf{e}_{i_{T}} \end{bmatrix} \\ \underset{i_{T}}{\overset{}{\underset{}}} = \mathbf{e}_{i_{T}} \begin{bmatrix} \mathbf{e}_{i_{T}} & \mathbf{e}_{i_{T}} & \mathbf{e}_{i_{T}} \end{bmatrix} \\ \underset{i_{T}}{\overset{}{\underset{}}} = \mathbf{e}_{i_{T}} \end{bmatrix} \\ \underset{i_{T}}{\overset{}{\underset{}}} = \mathbf{e}_{i_{T}} \begin{bmatrix} \mathbf{e}_{i_{T}} & \mathbf{e}_{i_{T}} & \mathbf{e}_{i_{T}} \end{bmatrix} \\ \underset{i_{T}}{\overset{}{\underset{}}} = \mathbf{e}_{i_{T}} \end{bmatrix} \\ \underset{i_{T}}{\overset{}{\underset{}}} = \mathbf{e}_{i_{T}} \begin{bmatrix} \mathbf{e}_{i_{T}} & \mathbf{e}_{i_{T}} & \mathbf{e}_{i_{T}} \end{bmatrix} \\ \underset{i_{T}}{\overset{}{\underset{}}} = \mathbf{e}_{i_{T}} \end{bmatrix} \\ \underset{i_{T}}{\overset{}{\underset{}}} = \mathbf{e}_{i_{T}} \end{bmatrix} \\ \underset{i_{T}}{\overset{}{\underset{}}} = \mathbf{e}_{i_{T}} \\ \underset{i_{T}}{\overset{}{\underset{}}} = \mathbf{e}_{i_{T}} \end{bmatrix} \\ \underset{i_{T}}{\overset{}{\underset{}}} = \mathbf{e}_{i_{T}} \\ \underset{i_{T}}{\overset{}{\underset{}}} = \mathbf{e}_{i_{T}} \\ \underset{i_{T}}{\overset{}{\underset{}}} = \mathbf{e}_{i_{T}} \\ \underset{i_{T}}{\overset{}{\underset{}} = \mathbf{e}_{i_{T}} \\ \underset{i_{T}}{\overset{}{\underset{}}} = \mathbf{e}_{i_{T}} \\ \underset{i_{T}}{\overset{}{\underset{}} = \mathbf{e}_{i_{T}} \\ \underset{i_{T}}{\overset{}{\underset{}}} = \mathbf{e}_{i_{T}} \\ \underset{i_{T}}{\overset{}{\underset{}} = \mathbf{e}_{i_{T}} \\ \underset{i_{T}}{\overset{}} = \mathbf{e}_{i_{T}} \\ \underset{i_{T}}{\overset{}} = \mathbf{e}_{$ 0.2 skrik er [net r ea (40) on o T [7 7 6 $\begin{array}{c} (40) \\ s_{1} \\ s_{2} \\ s_{3} \\ s_{4} \\ s_{5} \\ s_{7} \\$

([·e]) is a string of the second string of the seco

[_ _ _ k_ .

H^B sens ike . [0001, 6 k 10 06 (6 6 6 0 $\begin{bmatrix} -\frac{1}{2}, \frac{1}{2}, \frac{1}{2}$ $\begin{array}{c} \mathbf{k}_{1} \begin{bmatrix} \mathbf{k}_{1} \\ \mathbf{k}_{2} \end{bmatrix} \mathbf{k}_{2} \\ \mathbf{k}_{2} \begin{bmatrix} \mathbf{k}_{1} \\ \mathbf{k}_{2} \end{bmatrix} \mathbf{k}_{2} \\ \mathbf{k}_{2} \\ \mathbf{k}_{2} \end{bmatrix} \mathbf{k}_{2} \\ \mathbf{k$ $\begin{array}{c} \mathbf{B}_{i} = 40 \mathbf{,} \mathbf{I} = \mathbf{k}_{i} \mathbf{,} \mathbf{r} \mathbf{F} = \mathbf{I}_{i} \mathbf{e}_{i} \mathbf{I} \mathbf{k}_{i} \mathbf{e}_{i} \mathbf{I} \mathbf{I} \mathbf{k}_{i} \mathbf{e}_{i} \mathbf{I} \mathbf{I} \mathbf{k}_{i} \mathbf{e}_{i} \mathbf{I} \mathbf{I} \mathbf{k}_{i} \mathbf{e}_{i} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{E}_{i} \mathbf{E}_{i} \mathbf{I} \mathbf{I} \mathbf{E}_{i} \mathbf{E}_{i} \mathbf{E}_{i} \mathbf{I} \mathbf{I} \mathbf{E}_{i} \mathbf$ ([,[_{i,j} _).

T

 $\begin{array}{c} \delta_{i} & \sigma_{i} & \sigma_{j} & \sigma_{i} \\ \delta_{i} & \sigma_{j} & \sigma_{i} & \sigma_{i} \\ \bullet & i \\ \end{array} \begin{array}{c} \lambda & \sigma_{i} & \sigma_{i} \\ \bullet & \sigma_{i} & \sigma_{i} \\ \end{array} \begin{array}{c} \delta_{i} & \sigma_{i} & \sigma_{i} \\ \sigma_{i} & \sigma_{i} & \sigma_{i} \\ \end{array} \begin{array}{c} \delta_{i} & \sigma_{i} \\ \sigma_{i} & \sigma_{i} \\ \end{array} \begin{array}{c} \delta_{i} & \sigma_{i} \\ \sigma_{i} & \sigma_{i} \\ \end{array} \begin{array}{c} \delta_{i} & \sigma_{i} \\ \sigma_{i} & \sigma_{i} \\ \end{array} \begin{array}{c} \delta_{i} & \sigma_{i} \\ \sigma_{i} & \sigma_{i} \\ \end{array} \begin{array}{c} \delta_{i} & \sigma_{i} \\ \sigma_{i} & \sigma_{i} \\ \end{array} \begin{array}{c} \delta_{i} & \sigma_{i} \\ \sigma_{i} & \sigma_{i} \\ \end{array} \begin{array}{c} \delta_{i} & \sigma_{i} \\ \sigma_{i} & \sigma_{i} \\ \end{array} \begin{array}{c} \delta_{i} & \sigma_{i} \\ \sigma_{i} & \sigma_{i} \\ \end{array} \begin{array}{c} \delta_{i} & \sigma_{i} \\ \sigma_{i} & \sigma_{i} \\ \end{array} \begin{array}{c} \delta_{i} & \sigma_{i} \\ \sigma_{i} & \sigma_{i} \\ \end{array} \begin{array}{c} \delta_{i} & \sigma_{i} \\ \sigma_{i} & \sigma_{i} \\ \end{array} \begin{array}{c} \delta_{i} & \sigma_{i} \\ \sigma_{i} & \sigma_{i} \\ \end{array} \begin{array}{c} \delta_{i} & \sigma_{i} \\ \sigma_{i} & \sigma_{i} \\ \end{array} \begin{array}{c} \delta_{i} & \sigma_{i} \\ \sigma_{i} & \sigma_{i} \\ \end{array} \begin{array}{c} \delta_{i} & \sigma_{i} \\ \sigma_{i} & \sigma_{i} \\ \end{array} \begin{array}{c} \delta_{i} & \sigma_{i} \\ \sigma_{i} & \sigma_{i} \\ \end{array} \begin{array}{c} \delta_{i} & \sigma_{i} \\ \end{array} \begin{array}{c} \delta_{i} & \sigma_{i} \\ \sigma_{i} & \sigma_{i} \\ \end{array} \end{array}$ rea y i r [, e k [.) e e a - i aa e i [n tir r h n he i * [

[[_k] _k _k _k 1

Pyrosequence analysis and comparison with HITChip analysis. e æ ee ige ne (laie-ige egi i i e e, ieaikke ge i lyezge ziel ee le '-n ie e az zygelsk [-+ i 7 **6** $\begin{array}{c} \begin{array}{c} \begin{array}{c} & -\gamma & \gamma & \gamma & \gamma \\ s & -\gamma & \gamma & \rho \\ k & -z & \gamma & \rho \\ k & -z & \gamma & \rho \\ s & -\gamma & s \\ s & -\gamma &$ k / z i 7 • • k [- - • • • • • • [[-

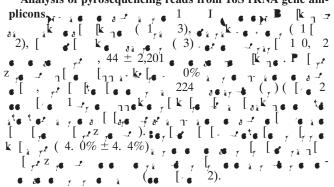
 $\begin{array}{c} \mathbf{s} \ 1, \ \begin{bmatrix} \mathbf{y}_{k} \\ \mathbf{y} \end{bmatrix}, \ \begin{bmatrix} \mathbf{z} \\ \mathbf{y} \end{bmatrix}, \ \begin{bmatrix} \mathbf{z} \\ \mathbf{z} \end{bmatrix}, \ \begin{bmatrix} \mathbf{z} \end{bmatrix}, \ \begin{bmatrix} \mathbf{z} \\ \mathbf{z} \end{bmatrix}, \ \begin{bmatrix} \mathbf{z} \\ \mathbf{z} \end{bmatrix}, \ \begin{bmatrix} \mathbf{z} \\ \mathbf{z} \end{bmatrix}, \ \begin{bmatrix} \mathbf{z} \end{bmatrix}, \ \begin{bmatrix}$

[[p ke a	y k € € € € (' ₁ 3') ^b	$\begin{bmatrix} 11 & t^{\prime} & t^{\prime} & t^{\prime} \\ t^{\prime} & t^{\prime} & t^{\prime} \end{bmatrix} \begin{bmatrix} \mathbf{B} \\ \mathbf{B} \\ \mathbf{B} \end{bmatrix}^{d}$	i 38 i 666 38			
	[_{ŋ/ i} [_{ŋ/ i}	BB_B_B_BBB_B_BBB_B ********************	М	μ 2 ^t −6 ··			
ir [~ [ij 6 - [r	$\begin{array}{c} 2 \\ 2 \\ 3 \\ 10 \\ 1 \\ 10 \\ 1 \\ 13 \\ 14 \\ 2 \\ 14 \\ 14 \\ 14 \\ 14 \\ 14 \\ 14 \\ 14 \\ 14$	X Y B B X Y B B BB B B BB B B B B B A B B B A B B A B B B A B B B A B B B A B B A B A B B A B B A B A B B A B A B A B B A B A B A B A B	$\begin{array}{c} \texttt{F} & (56) \\ \texttt{F} & (56) \end{array}$	32 3 21 1 3 44 44			
Bifidobacterium	- Zr - - Zr -	BBB B B ^{A (} BBB B B B	P (55) P (55)	2 2			
Veillonella	ent = gy d ent = gy d	KE BB BBB B BBB C CCCCC	P (57) P (57)	3 3			
Streptococcus	yen yek 0	BBB C BBBBBBBBBBBBB	P (55) P (55)	3 1			
Escherichia coli	• • 84		P (57) P (57)	23 23			

 $\underset{\tau^{2} \in [1]}{\underset{\tau^{2} \in [2]}{\overset{}}} \underbrace{ \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \end{array}} \underbrace{ \left(\begin{array}{c} \\ \end{array} \right)} \underbrace{ \left(\begin{array}{c} \\ \end{array})} \underbrace{ \left(\begin{array}{c} \\ \end{array})} \underbrace{ \left(\begin{array}{c} \\ \end{array} \right)} \underbrace{ \left(\begin{array}{c} \\ \end{array} \right)} \underbrace{ \left(\begin{array}{c} \\ \end{array} \right)} \underbrace{ \left(\begin{array}{c} \end{array} \right)} \underbrace{ \left(\begin{array}{c} \end{array} \right)} \underbrace{ \left(\begin{array}{c} \\ \end{array} \right)} \underbrace{ \left(\begin{array}{c} \end{array} \right)} \underbrace{ \left(\end{array} \right)} \underbrace{ \left(\begin{array}{c} \end{array} \right)} \underbrace{ \left(\begin{array}{c} \end{array} \right)} \underbrace{ \left(\end{array} \right)} \underbrace{ \left(\begin{array}{c} \end{array} \right)} \underbrace{ \left(\end{array} \right)} \underbrace{ \left(\begin{array}{c} \end{array} \right)} \underbrace{ \left(\end{array} \right)} \underbrace{ \left(\end{array} \right)} \underbrace{ \left(\end{array} \right)} \underbrace{ \left(\begin{array}{c} \end{array} \right)} \underbrace{ \left(\end{array} \right)} \underbrace{ \left($

Quantification of bacterial community members by qPCR. $\begin{array}{c} \mathbf{F} \\ \mathbf$ _ਸ∎ੱ

 $\begin{bmatrix} k & z_{i} \\ y & z_{i} \\ z$


a te i e la pr B [[. e e yi eye k dy e e ly te ai y dy d' i y f ey (laje le i nyi y eyiy [/ laje le ai k k ye d' [k nje st v njen]-1.12

16S rRNA gene library construction and analysis. $\begin{array}{c} \mathbf{n} & \mathbf{n} & \mathbf{n} & \mathbf{i} & \mathbf{i} & \mathbf{i} & \mathbf{n} & \mathbf{n} & \mathbf{i} & \mathbf{n} & \mathbf{i} & \mathbf{$ $\begin{array}{c} \mu \ k & \ k \ (), \ -i_{1} \ i_{1} \ \cdot \ \beta^{-1} \ \cdot \ i_{1} \ \cdot \ \beta^{-1} \ \cdot \ i_{1} \ \cdot \ \beta^{-1} \ \cdot \ \beta^{-1} \ \cdot \ i_{1} \ \cdot \ \beta^{-1} \ \cdot \$

Nucleotide sequence accession numbers. 1 $\begin{array}{c} \mathbf{z} \\ \mathbf$

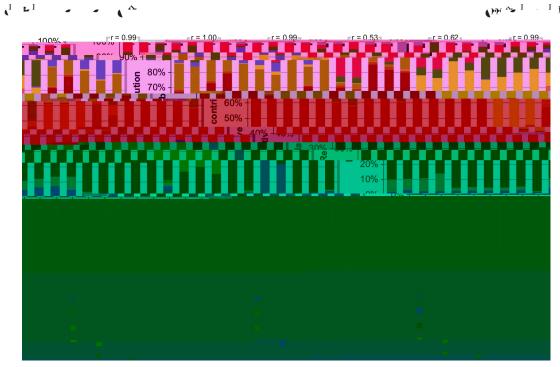
RESULTS

Analysis of pyrosequencing reads from 16S rRNA gene am-

 $\mathbf{y} = \mathbf{z}_{1} \cdot \mathbf{$ [), la kal ker i ren ie es r la le $\begin{bmatrix} r & z \\ k & r \\ k$ $\mathbf{k} = \begin{bmatrix} \mathbf{k} \\ \mathbf{k} \end{bmatrix} = \mathbf{k} = \mathbf{k} = \mathbf{k} = \begin{bmatrix} \mathbf{k} \\ \mathbf{k} \end{bmatrix} =$ $\mathcal{L}_{\mathbf{r}} \bullet \mathbf{r} \begin{bmatrix} \mathbf{k}_{\bullet} & \mathbf{a}_{i} \mathbf{r}_{\bullet} \mathbf{r} \end{bmatrix} \begin{bmatrix} \mathbf{k}_{\bullet} & \mathbf{a}_{i} \end{bmatrix} \mathbf{I}_{i\mathbf{r}} \begin{bmatrix} \mathbf{r}_{\bullet} \mathbf{r}_{i} \\ \mathbf{r}_{i} \end{bmatrix} \mathbf{I}_{i\mathbf{r}} \begin{bmatrix} \mathbf{r}_{\bullet} \mathbf{r}_{i} \end{bmatrix} \mathbf{I}_{i\mathbf{r}} \end{bmatrix} \mathbf{I}_{i\mathbf{r}} \begin{bmatrix} \mathbf{r}_{i\mathbf{r}} \mathbf{r}_{i} \end{bmatrix} \mathbf{I}_{i\mathbf{r}} \begin{bmatrix} \mathbf{r}_{i\mathbf{r}} \mathbf{r}_{i} \end{bmatrix} \mathbf{I}_{i\mathbf{r}} \end{bmatrix} \mathbf{I}_{i\mathbf{r}} \begin{bmatrix} \mathbf{r}_{i\mathbf{r}} \mathbf{r}_{i\mathbf{r}} \end{bmatrix} \mathbf{I}_{i\mathbf{r}} \begin{bmatrix} \mathbf{r}_{i\mathbf{r}} \mathbf{r}_{i\mathbf{r}} \end{bmatrix} \mathbf{I}_{i\mathbf{r}} \end{bmatrix} \mathbf{I}_{i\mathbf{r}} \end{bmatrix} \mathbf{I}_{i\mathbf{r}} \begin{bmatrix} \mathbf{r}_{i\mathbf{r}} \mathbf{r}_{i\mathbf{r}} \end{bmatrix} \mathbf{I}_{i\mathbf{r}} \end{bmatrix} \mathbf{I}_{i\mathbf{r}} \begin{bmatrix} \mathbf{r}_{i\mathbf{r}} \mathbf{r}_{i\mathbf{r}} \end{bmatrix} \mathbf{I}_{i\mathbf{r}} \end{bmatrix} \mathbf{I}_{i\mathbf{r}} \end{bmatrix} \mathbf{I}_{i\mathbf{r}} \begin{bmatrix} \mathbf{r}_{i\mathbf{r}} \mathbf{r}_{i\mathbf{r}} \end{bmatrix} \mathbf{I}_{i\mathbf{r}} \end{bmatrix}$ $\begin{array}{c} \mathbf{r} \\ \mathbf{$ $\begin{bmatrix} r^{2} Z \\ r^{2} Z \\ r^{2} Z \\ r^{2} C \\ a \end{bmatrix} \begin{bmatrix} Z \\ r^{2} Z \\ r^{2} C \\ r^$

ela da este keriden Zeetele en lije in zietele keriden zeetele ik eigik ei eg kas (se - 3 - ge ane ker[k[e]). e te es er er rees re [1. %), a Bacilli (.2% ± 4. %) [Clostridium, $(24.0\% \pm 11.\%), (13.3\% \pm .1\%), (14.0\% \pm 14.1\%),$ $\begin{bmatrix} ... \\ ... \\ ... \\ ... \\ [(2.2\% \pm 13.4\%) \\ ... \\ .$ *.*. 4).

The effects of different forward primers on microbial profiling by barcoded pyrosequencing. k to the start Karal e e e le jela z z ji I I e er B $\begin{bmatrix} \mathbf{k} \\ \mathbf{k} \end{bmatrix} = \begin{bmatrix} \mathbf{k} \\ \mathbf$ nke i kailenze eklerlire kne Te a Zea e ar [nni r e [e ete i rea al 6 n i erre dera aert er ber ber eesaad $k_{e_{f}} a_{f} I_{k} e_{f} e_{f}$, $[f_{f} I_{k} a_{k} k_{n}] - k_{k} f_{k} f_{k}$ $\begin{bmatrix} k & j & k \\ k & j & k \end{bmatrix} = \begin{bmatrix} k & j & k \\ k & k & k \end{bmatrix} = \begin{bmatrix} k & j & k \\ k & k & k \end{bmatrix} = \begin{bmatrix} k & j & k \\ k & k & k \end{bmatrix} = \begin{bmatrix} k & j & k \\ k & k & k \end{bmatrix} = \begin{bmatrix} k & j & k \\ k & k & k \end{bmatrix} = \begin{bmatrix} k & j & k \\ k & k & k \end{bmatrix} = \begin{bmatrix} k & j & k \\ k & k & k \end{bmatrix} = \begin{bmatrix} k & j & k \\ k & k & k \end{bmatrix} = \begin{bmatrix} k & j & k \\ k & k & k \end{bmatrix} = \begin{bmatrix} k & j & k \\ k & k & k \end{bmatrix} = \begin{bmatrix} k & j & k \\ k & k & k \end{bmatrix} = \begin{bmatrix} k & j & k \\ k & k & k \end{bmatrix} = \begin{bmatrix} k & j & k \\ k & k & k \end{bmatrix} = \begin{bmatrix} k & j & k \\ k & k & k \end{bmatrix} = \begin{bmatrix} k & j & k \\ k & k & k \end{bmatrix} = \begin{bmatrix} k & j & k \\ k & k & k \end{bmatrix} = \begin{bmatrix} k & j & k \\ k & k & k \end{bmatrix} = \begin{bmatrix} k & k & k \\ k & k & k \end{bmatrix} = \begin{bmatrix} k & k & k \\ k & k & k \end{bmatrix} = \begin{bmatrix} k & k & k \\ k & k & k \end{bmatrix} = \begin{bmatrix} k & k & k \\ k & k & k \end{bmatrix} = \begin{bmatrix} k & k & k \\ k & k & k \end{bmatrix} = \begin{bmatrix} k & k & k \\ k & k & k \end{bmatrix} = \begin{bmatrix} k & k & k \\ k & k & k \end{bmatrix} = \begin{bmatrix} k & k & k \\ k & k & k \end{bmatrix} = \begin{bmatrix} k & k & k \\ k & k & k \end{bmatrix} = \begin{bmatrix} k & k & k \\ k & k & k \end{bmatrix} = \begin{bmatrix} k & k & k \\ k & k & k \end{bmatrix} = \begin{bmatrix} k & k & k \\ k & k & k \end{bmatrix} = \begin{bmatrix} k & k & k \\ k & k & k \end{bmatrix} = \begin{bmatrix} k & k & k \\ k & k & k \end{bmatrix} =$ I $\mathbf{k} = \mathbf{k}$ $\mathbf{k} = \mathbf{k}$ $\mathbf{k} = [\mathbf{k} + \mathbf{k}]$ $\mathbf{k} = [\mathbf{k} + \mathbf{k}]$

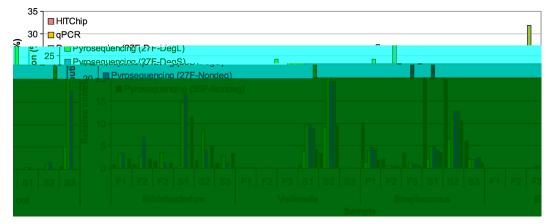

Byr, I X. J I S Y B 20

$ 2 \cdot \mathbf{E} \lfloor \mathbf{z}_{\mathbf{z}} \mathbf{e} + \mathbf{z}_{\mathbf{z}} \mathbf{e} \mathbf{e} \mathbf{z}_{\mathbf{z}} \mathbf{e} \rfloor = \mathbf{z}_{\mathbf{z}} \mathbf{e} \lfloor \mathbf{z}_{\mathbf{z}} \mathbf{e} \rfloor = \mathbf{z}_{\mathbf{z}} \mathbf{z}_{\mathbf{z}} \mathbf{e} \mathbf{z}_{\mathbf{z}}$												
[k] e [] ke	■ [[_{dj} €f d' '€ ¼ € [_{gt} * Z _g € -2		■ [[_{∂1} 6 -f ⁺ z ^e] ₁ 6 [₁ e Z ₁ 6 -z									
	I <u>i</u> ·i 6 6 26	6 6 8 6 7		T	t	% •k [■ [_i 1 ^a % ■. ^{a,}		R a,b	a,b	[;
		, t	, B	I _{k-k} 66.8		Z ₇ 66	s ^a	[.		A. 6 Kr. j. j.	B ^a	54 - yt -≠ €*
	,0 1 , 4 ,4 , 0	24 . 2 3. 232.13 220.3	10 . 10 .43 114.40 11 .1	2, 2 3, 2, 2 3, 4	23 .0 244.11 22 .0 21 .1	0. 2 4 . 4 . 3 4 .3	12 3 1,0 0	1,02 1,420 1,0 1, 2	$1,141 \\ 1, 3 \\ 1,1 1 \\ 1, 1$	4 1,31 1,002 1,4 0	1,04 1,341 1,11 1, 4	3.13 3.1 2. 1 3.01
2 2 2 3 4 3 4 4 6 6 7 6 7 6 7 6 7 7 6 7 7 6 7 7 6 7 7 6 7 7 6 7 7 6 7 7 7 6 7 7 7 7 6 7	$10,42 \\ 11, 1 \\ , 24 \\ , 32$	24 .3 2 .1 230.0 22 . 3	100. 3 110. 3 110.	,431 , 03 4, 04 4,0 1	233. 24 . 1 22 .01 223.	2.10 0.0 4 .3 1.32	$1,1 \\ 1,21 \\ 1,13 \\ 1,0 \ 0$	$1, 1 \\ 1, 1 \\ 1, 2 \\ 1,$	1, 04 1, 3 1, 1, 1	1, 03 1, 2 1,4 1,4	1, 1, 1, 1, 24	3.2 3.2 3.231 3.1 0
3 2 3 4 5 2 7 6 2 7 6 3 7 6 3 7 6 4 6 5 7 6 6 7 7 6 7 7 7 6 7 7 7 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 77 7 7 7 7	4, 2 ,34 ,430 4, 4	230. 22 . 3 204. 1 201.40	100.2 10 . 1 110. 2 113.	2, 2, 4 3, 0 2,1 1	21 . 3 220.0 20 . 202.30	$\begin{array}{c} 4.2 \\ 2.0 \\ 4 \\ . \\ 3 \\ 4 \\ . \\ 0 \end{array}$	$\begin{array}{c} 03\\0\\1\\4\end{array}$	1,103 1,03 1,424	1,24 1,1 1, 3 1,111	4 1,324 4	1,0 1,01 1,4 0	2. 4 2. 2 2. 32 2. 4
1 2 2 3 4 3 4 4 6 6 7 6 7 6 7 6 7 7 6 7 7 6 7 7 7 7	$10,3 \ 3 \\10,320 \ 3 \\11,3$	23 . 243.42 21 .34 234.0	. 1 100.03 10 .	,01 ,13 4, 0 , 22	21 .23 22 .11 203.31 22 .00	4 .2 4 . 4 . 1.1	3 4 42	10 3 1,0	1,00 1,0 14 1,1 4	42 0 1,004	4 0 44 1,0	2.10 2.0 4 1. 14 2.1 0
2 2 2 2 4 3 4 4 6	, 2 10,0 3 , 2 10,2 4	24 .04 241.03 22 . 22 .	101.2 10.4 113.33	3, 3 4, 30 3, 2 4, 0	22 .30 22 . 1 21 .33 21 .00	0.3 4 .04 4 .1 43. 0	22	4 3 2	$1,0 \ 1$ $1,0 \ 1$ 2 1,04	$4 \\ 1 \\ 0$	2 0 2 3	2.32 2.3 2.1 0 2.2
3 2 2 2 4 3 4 2 4 6 2 4 6 6 7 6 6 7 6 7 6 7 6 7 7 6 7 7 6 7 7 6 7 7 6 7 7 7 6 7	, 24 , 01 ,2	24 . 4 240.44 21 .2 21 .	100. 2 10 .2 114.20 114.2	3,12 3,4 3,21 3,0 2	234. 23 .31 21 . 2 213.	2. 3.1 4 . 0 4 .	2 01 1	1,0 1,301 1,3 4 1,1	1,1 1,42 1, 14 1,30	1,00 1,204 1,2 1,114	1,0 2 1,2 4 1,3 1,21	2. 3.021 3.1 3.1 3

z k z 1 t z 1 z 1 z z 1 z 1 z z 1 z 1 z z 1 z 1 z z 1 z

analysis. $a_{k} = \begin{bmatrix} a & c_{y} & c_{z} & k & a_{k} & c_{y} & c_{z} & c_{y} & c_{z} &$

 $\begin{bmatrix} r_{1} & r_{2} & k & r_{1} & k & r_{2} & k & r_{3} & k & r_{3} & r$



 $\begin{array}{c} \mathbf{F}_{\mathbf{r}} \mathbf{e}^{\mathbf{r}} \mathbf{e}^{\mathbf{r}$ $\mathbf{e}_{\mathbf{r}} (\mathbf{e}_{\mathbf{r}} \quad \mathbf{e}_{\mathbf{r}}),$ Le ere er t i i f $\begin{bmatrix} 1 & \mathbf{e} &$ 7 67 - 47 6 17 1 6 6 8 6 6 6 6 4 5 6 7 1 - B - 1 [[- 4 $\begin{bmatrix} & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & &$ ð 7**6** ---

 $\begin{array}{c} \mathbf{M} & \mathbf{i} \in \{\mathbf{r}_{j}, \mathbf{r}_{j}\} \\ \mathbf{e} & \mathbf{e}_{j} = \mathbf{e}_{j} \\ \mathbf{e} & \mathbf{e}_{j} = \mathbf{e}_{j} \\ \mathbf{e} & \mathbf{e}_{j} \\$ Streptococcus 1. (Bacilli), $\begin{array}{c} \bullet \begin{bmatrix} \mathsf{s} \bullet & \mathsf{s} & \mathsf{s} & \mathsf{k} \end{bmatrix}_{\mathcal{T}} \mathbf{s}^{\mathcal{T}} & \mathsf{s} \bullet & \mathsf{s} & \mathsf{s} & \mathsf{s} & \mathsf{s} & \mathsf{s} \\ \mathsf{s}_{\mathcal{T}} \bullet \mathbf{s}^{\mathcal{T}} & \begin{bmatrix} \mathsf{s} \bullet & \mathsf{s} & \mathsf{k} \end{bmatrix}_{\mathcal{T}} \mathbf{s}^{\mathcal{T}} & \mathsf{s} \\ \mathsf{s}_{\mathcal{T}} \bullet \mathbf{s}^{\mathcal{T}} & \begin{bmatrix} \mathsf{s} \bullet & \mathsf{s} & \mathsf{s} & \mathsf{s} & \mathsf{s} & \mathsf{s} \\ \mathsf{s}_{\mathcal{T}} \bullet & \mathsf{s} & \mathsf{s} & \mathsf{s} & \mathsf{s} & \mathsf{s} & \mathsf{s} \\ \end{array} \right]$ $\begin{array}{c} \mathbf{k} \\ \mathbf{k} \\ \mathbf{k} \\ \mathbf{k} \\ \mathbf{k} \end{array} \right) \cdot \mathbf{k} \left[\mathbf{k} \\ \mathbf{k} \\ \mathbf{k} \\ \mathbf{k} \\ \mathbf{k} \end{array} \right] \cdot \mathbf{k} \cdot \mathbf{k} \\ \mathbf{k}$

Quantification of bacterial groups by qPCR. n ik[s inie est[→ Bai[-star-

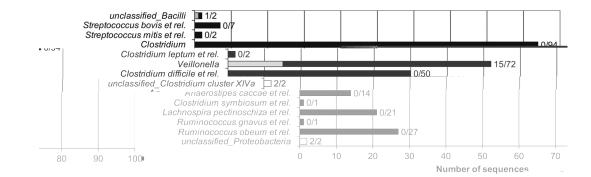
, kely a ly to le los i korri kork je kok-Bifidobacterium, Veillonella, Streptococcus, [E. coli (<math> . . 3). $\begin{bmatrix} \mathbf{s}_{1} & \mathbf{s}_{2} & \mathbf{k} & \mathbf{k} \\ \mathbf{s}_{2} & \mathbf{s}_{3} & \mathbf{k} & \mathbf{s}_{1} & \mathbf{s}_{1} & \mathbf{s}_{2} & \mathbf{s}_{3} \\ \end{bmatrix} \begin{bmatrix} \mathbf{s}_{1} & \mathbf{s}_{2} & \mathbf{s}_{3} & \mathbf{s}_{3} \\ \mathbf{s}_{1} & \mathbf{s}_{2} & \mathbf{s}_{3} & \mathbf{s}_{3} \end{bmatrix} \begin{bmatrix} \mathbf{s}_{1} & \mathbf{s}_{2} & \mathbf{s}_{3} \\ \mathbf{s}_{1} & \mathbf{s}_{2} & \mathbf{s}_{3} & \mathbf{s}_{3} \end{bmatrix} \begin{bmatrix} \mathbf{s}_{1} & \mathbf{s}_{2} & \mathbf{s}_{3} \\ \mathbf{s}_{1} & \mathbf{s}_{2} & \mathbf{s}_{3} & \mathbf{s}_{3} \end{bmatrix} \begin{bmatrix} \mathbf{s}_{1} & \mathbf{s}_{2} & \mathbf{s}_{3} \\ \mathbf{s}_{1} & \mathbf{s}_{2} & \mathbf{s}_{3} & \mathbf{s}_{3} \end{bmatrix} \begin{bmatrix} \mathbf{s}_{1} & \mathbf{s}_{2} & \mathbf{s}_{3} \\ \mathbf{s}_{1} & \mathbf{s}_{2} & \mathbf{s}_{3} & \mathbf{s}_{3} \end{bmatrix} \begin{bmatrix} \mathbf{s}_{1} & \mathbf{s}_{2} & \mathbf{s}_{3} \\ \mathbf{s}_{1} & \mathbf{s}_{2} & \mathbf{s}_{3} & \mathbf{s}_{3} \end{bmatrix} \begin{bmatrix} \mathbf{s}_{1} & \mathbf{s}_{2} & \mathbf{s}_{3} \\ \mathbf{s}_{2} & \mathbf{s}_{3} & \mathbf{s}_{3} \end{bmatrix} \begin{bmatrix} \mathbf{s}_{1} & \mathbf{s}_{2} & \mathbf{s}_{3} \\ \mathbf{s}_{2} & \mathbf{s}_{3} & \mathbf{s}_{3} \end{bmatrix} \begin{bmatrix} \mathbf{s}_{1} & \mathbf{s}_{2} & \mathbf{s}_{3} \\ \mathbf{s}_{2} & \mathbf{s}_{3} & \mathbf{s}_{3} \end{bmatrix} \begin{bmatrix} \mathbf{s}_{1} & \mathbf{s}_{2} & \mathbf{s}_{3} \\ \mathbf{s}_{2} & \mathbf{s}_{3} & \mathbf{s}_{3} \end{bmatrix} \begin{bmatrix} \mathbf{s}_{1} & \mathbf{s}_{2} & \mathbf{s}_{3} \\ \mathbf{s}_{2} & \mathbf{s}_{3} & \mathbf{s}_{3} \end{bmatrix} \begin{bmatrix} \mathbf{s}_{1} & \mathbf{s}_{2} & \mathbf{s}_{3} \\ \mathbf{s}_{2} & \mathbf{s}_{3} & \mathbf{s}_{3} \end{bmatrix} \begin{bmatrix} \mathbf{s}_{1} & \mathbf{s}_{2} & \mathbf{s}_{3} \\ \mathbf{s}_{1} & \mathbf{s}_{2} & \mathbf{s}_{3} \end{bmatrix} \begin{bmatrix} \mathbf{s}_{1} & \mathbf{s}_{2} & \mathbf{s}_{3} \\ \mathbf{s}_{1} & \mathbf{s}_{2} & \mathbf{s}_{3} \end{bmatrix} \begin{bmatrix} \mathbf{s}_{1} & \mathbf{s}_{2} & \mathbf{s}_{3} \\ \mathbf{s}_{1} & \mathbf{s}_{2} & \mathbf{s}_{3} \end{bmatrix} \begin{bmatrix} \mathbf{s}_{1} & \mathbf{s}_{2} & \mathbf{s}_{3} \\ \mathbf{s}_{1} & \mathbf{s}_{2} & \mathbf{s}_{3} \end{bmatrix} \begin{bmatrix} \mathbf{s}_{1} & \mathbf{s}_{2} & \mathbf{s}_{3} \\ \mathbf{s}_{1} & \mathbf{s}_{2} & \mathbf{s}_{3} \end{bmatrix} \begin{bmatrix} \mathbf{s}_{1} & \mathbf{s}_{2} & \mathbf{s}_{3} \\ \mathbf{s}_{1} & \mathbf{s}_{2} & \mathbf{s}_{3} \end{bmatrix} \begin{bmatrix} \mathbf{s}_{1} & \mathbf{s}_{2} & \mathbf{s}_{3} \\ \mathbf{s}_{1} & \mathbf{s}_{2} & \mathbf{s}_{3} \end{bmatrix} \begin{bmatrix} \mathbf{s}_{1} & \mathbf{s}_{2} & \mathbf{s}_{3} \\ \mathbf{s}_{1} & \mathbf{s}_{2} & \mathbf{s}_{3} \end{bmatrix} \begin{bmatrix} \mathbf{s}_{1} & \mathbf{s}_{2} & \mathbf{s}_{3} \\ \mathbf{s}_{1} & \mathbf{s}_{2} & \mathbf{s}_{3} \end{bmatrix} \begin{bmatrix} \mathbf{s}_{1} & \mathbf{s}_{2} & \mathbf{s}_{3} \\ \mathbf{s}_{1} & \mathbf{s}_{2} & \mathbf{s}_{3} \end{bmatrix} \begin{bmatrix} \mathbf{s}_{1} & \mathbf{s}_{2} & \mathbf{s}_{3} \\ \mathbf{s}_{1} & \mathbf{s}_{3} \end{bmatrix} \begin{bmatrix} \mathbf{s}_{1} & \mathbf{s}_{2} & \mathbf{s}_{3} \\ \mathbf{s}_{1} & \mathbf{s}_{2} & \mathbf{s}_{3} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \mathbf{s}_{1} & \mathbf{s}_{2} & \mathbf{s}_{3} \\ \mathbf{s}_{1} & \mathbf{s}_{2} & \mathbf{s}_{3} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \mathbf{s}_{1} & \mathbf{s}_{2} & \mathbf{s}_{3} \\ \mathbf{s}_{1} & \mathbf{s}_{2} & \mathbf{s}_{3} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \mathbf{s}_{1} & \mathbf{s}_{2} & \mathbf{s}_{3} \\ \mathbf{s}_{1} & \mathbf{s}_{2} \\ \mathbf{s}_{2} & \mathbf{s}_{3} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \mathbf{s}_{1}$ The early the rest ke for the for ni sty it is get the get for get it is name get Ē. coli.

[↓] ^B [±]γ^B [[, [^ℓ] [↓] ^β [−]γ^B [[, $\begin{array}{c} . \ 3. \ {\color{red}\mathbb{B}}_{k} k \ {\color{red}1} \left[\begin{array}{c} {\color{red}1} \\ {\color{red}1} \end{array} \right] \left[\begin{array}{c} {\color{red}1} \end{array} \right] \left[$ 4 [. • Ļ ð i $\begin{bmatrix} n & i & 0 \\ k & 1 \end{bmatrix} = \begin{bmatrix} i & 0 \\ k \end{bmatrix} = \begin{bmatrix} i \\ 0 \end{bmatrix}$ to al + 4+# .

C

. . k [C Clostridium , Z, [• · • 5 ð i n [, **k** Lachnospiraceae, Z, 🔹 a L Proteobacteria al Z, -1 e . . . TAT Betaproteobacteria. Variovorax 1 20 12 6¹6 Veillonella, η 🖲 T k -1 6 L 1.8 ſ L, 54 Z 6 Veillon'ella 1 Ι Veillonella [k 2k . [Veillonella, Z, . [1k k [, k (66 ŀ $\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \xrightarrow{f_k} \xrightarrow{f_k} \xrightarrow{k} \xrightarrow{f_k} \xrightarrow{k} \xrightarrow{f_k} \xrightarrow{f_k} \xrightarrow{k} \xrightarrow{f_k} \xrightarrow{f_k} \xrightarrow{k} \xrightarrow{f_k} \xrightarrow$ Z,

.7


Streptococcus

å

Í.

[

.

8 1

1. Bacilli

k

[Granulicatella

ð [Z

Lactobacillales,

6

6 . a Z18 [, +

DISCUSSION

 $\begin{array}{c} \begin{array}{c} & & & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ \end{array}$

 $k_{r} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ r & 1 & 1 & k & 1 \\ r & 1 & 1 & k & 1 \\ r & 1 & 1 & k & 1 \\ r & 1 & 1 & 1 \\ r & 1 & 1 & k & 1 \\ r & 1 & 1 & 1 & 1 \\ r$

 $r_{f} = r_{f} + r_{f$ ker z[r[ir rer ref ir rke[ir B [P[zza[rie i 'las le ir reke[ir B [a ie [['e a k [rea i i - rie - referente to it b it

In Z I by on I is a set [] B g [[. . i-senlaet es rete teres elite (ه ا erek to YB [rer kn Z - rea - re $\begin{bmatrix} \mathbf{r}_{1} \mathbf{r}_{2} \mathbf{r}_{2} \mathbf{r}_{1} \mathbf{r}_{1} \mathbf{r}_{2} \mathbf{r}_{2} \mathbf{r}_{1} \mathbf{r}_{1} \mathbf{r}_{2} \mathbf{r}_{2} \mathbf{r}_{1} \mathbf{r}_{2} \mathbf{r}_{2} \mathbf{r}_{1} \mathbf{r}_{2} \mathbf{r}_{2} \mathbf{r}_{2} \mathbf{r}_{1} \mathbf{r}_{2} \mathbf{r}_{2}$ uli konne es men-reervint $1[_{T_{k}}]_{T_{k}} \bullet_{T_{kT}}[, \bullet_{T_{kT}}]_{\bullet}. Streptococcus [/ [\bullet_{T_{kT}}]_{\bullet} \bullet_{T_{kT}}]_{\bullet}$ ee an gegeneer ge - Barl [- are [, te gi g B [[- [n n e e and - arget [- grean gin [[. ...

ne fer a kne ee - kalere sern ka n Z - - kel i n i e e e - [• T T T ak • l/ ±² ′€y €€ y€3 − ±²l € 1 ±²ly€ 3 l ′€ € − m 3/5 y2 ′€ € −² € JF 2 € 2 € € − 1 k€ 3 2 ±8 j −² 2y − 2 2 − 1 € 54 − m = 7 e, ke le e k star len ze, a te , se [- ete]e [a e [-🍋 n 🌆 , Bifidobacterium 11.

aka sty style kky for fy sorr ke style y 1 a ky ky for fy sorr ke style at 1 a 12 style ky ky ky ky make ost for Bay for style ky for f A 1 6 k le y · sete y · k ly · · en eys k - k , K . K . , $\begin{array}{c} \mathbf{r} \in [\mathbf{k}_{1} \bullet, \mathbf{s}_{1} \bullet [\mathbf{s}_{1} \bullet] \mathbf{s}_{1} \bullet \mathbf{s}_{2} \bullet \mathbf{s$ L [$\begin{array}{c} k & _{\sigma' k} \begin{bmatrix} 1 & \dots & _{\gamma' k} \end{bmatrix}_{\sigma \sigma k} k k k k \begin{bmatrix} 1 & 1 & \dots & 1 \end{bmatrix}_{q \sigma \gamma' q \sigma$ $\begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix} \xrightarrow{r} 2 \xrightarrow{r} 1 \xrightarrow{kr} 3$ t [k i e sik 10 [e k Actinobacteria [E. coli [/ [.

ACKNOWLEDGMENTS

 $\begin{bmatrix} 1_{11} & a & 4_{6} & \gamma & 1 & a \end{bmatrix} \begin{bmatrix} a & a_{1} & -a & 1 \\ a_{1} & a & a_{1} & \gamma & a_{1} & \gamma \end{bmatrix} \begin{bmatrix} a & k & -k & k \\ k & -k & k \end{bmatrix} \begin{bmatrix} a & -a_{1} & -a_{$

REFERENCES

- Weightman. 200 I \mathbf{I} \mathbf{I}

- . BOOJINK, C. C., E. G. Zoetendal, M. Kleerebezem, and W. M. de Vos. 200. **F** $\frac{\delta r}{k} = \frac{1}{k} \frac{\delta r}{k} \frac{1}{k} \frac{1}{r} \frac{1}{r}$
- $\begin{bmatrix} 1.0000 \ 010 \end{bmatrix}$ $Claesson, M. J., et al. 200 . B.k <math>\prod_{i=1}^{n} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$ $Claesson, M. J., et al. 2010. B.k <math>\prod_{i=1}^{n} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$ $Claesson, M. J., et al. 2010. B.k <math>\prod_{i=1}^{n} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$ $Claesson, M. J., et al. 2010. B.k <math>\prod_{i=1}^{n} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$ $Claesson, M. J., et al. 2010. B.k \prod_{i=1}^{n} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$ $Claesson, M. J., et al. 2010. B.k \prod_{i=1}^{n} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$ $Claesson, M. J., et al. 2010. B.k \prod_{i=1}^{n} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$ Cole, J. R., et al. 200. Cole, J. R., et al

- 12. Eckburg, P. B., et al. 200 . $k = \frac{1}{2^{k} + k} = \frac{1}{2^{k}} \left[\frac{1}{2^{k} + k} \right] = \frac{1}{2^{k}} \left[\frac{1}{2^{k} + k} \right]$

- 1. Hamady, M., and R. Knight. 200 $\mu^{-} s_{k} = \int_{a}^{b} k_{k} k_{k} + e_{1} z_{k} z_{k} k_{k} = \int_{a}^{b} k_{k} z_{k} + e_{1} z_{k} z_{k} + e_{1$
- 1 . Harmsen, H. J., G. C. Raangs, T. He, J. E. Degener, and G. W. Welling. 2002.

- 22. Hughes, J. B., J. J. Hellmann, T. H. Ricketts, and B. J. Bohannan. 2001.
- $200 \cdot \left[\frac{1}{r^2} \left[\frac{1}{r^$
- $= \frac{1}{2} + \frac{$

20 0 · · · · · · LLI

MALINE .

- 2. Ludwig, W., et al. 2004. I $32:13^3$ 3 13 1. 2. Marguiles, M., et al. 2007. $r^2 s^2 s^2$
- 30. Monteris, v., L. Cauquit, S. Combes, J. J. Coulon, and T. Chamiler $z_{1} = z_{1} + z_{2} + z_{3} + z_{4} + z_{5} + z_{5}$

- 3. Reeder, J., and R. Knight. 200. $Z[\bullet + 2 \bullet \bullet^2] [\bullet [+ 2 \bullet \bullet^2] J [_{\tau}$ 6: 3 . 3 . 3 . Rinttila, T., A. Kassinen, E. Malinen, L. Krogius, and A. Palva. 2004.
- $\begin{array}{c} \mathbf{s} \in \mathbf{K} \\ \mathbf{s} \in \mathbf{s} \\ \mathbf{s} \\ \mathbf{s} \in \mathbf{s} \\ \mathbf{$

- I [, **457:**4 0 4 4.
- 4 . van den Bogert, B., M. M. Leimena, W. M. de Vos, E. G. Zoetendal, and M. 4 . Van den Bogert, B., M. M. Leimena, W. M. de Vos, E. G. Zoetendai, and M. Kleerebezen. $\int_{T} \frac{1}{\sqrt{2}} \left[-\frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} -\frac{1}{\sqrt{2}} \left[k_{\sigma f} \left[-\frac{1}{\sqrt{2}} k_{\sigma f} -\frac{1}{\sqrt{2}} -\frac{1$
- 4. Zoetendal, E. G., C. T. Collier, S. Koike, R. I. Mackie, and H. R. Gaskins.
- 2004 yr i e a [e_{14} e_{1} [e_{14} e_{14}] e_{14} e_{14}
- $\begin{array}{c} & & \\ & &$