Abstract
Tuberculosis is characterized by periods in which the disease may be quiescent or even clinically inapparent, but in which tubercle bacilli persist and retain the potential to reactivate the disease. The present study was carried out in pursuit of an in vitro model which might contribute to the understanding of the physiology of nonreplicating persisters, with oxygen limitation used as the means of inducing this state. When actively growing aerated cultures of Mycobacterium tuberculosis were suddenly placed under anaerobic conditions the bacilli died rapidly, with a half-life of 10 h. When the bacilli were grown in liquid medium without agitation, they adapted to the microaerophilic conditions encountered in the sediment; the adapted bacilli in the sediment did not replicate there but were tolerant of anaerobiosis, exhibiting a half-life of 116 h. Among the early events associated with the adaptation were the synthesis of an antigen designated URB, the function of which is not known, and a fourfold increase in isocitrate lyase activity. The bacilli later exhibited a 10-fold increase in synthesis of a glycine dehydrogenase that catalyzes the reductive amination of glyoxylate, concomitantly oxidizing NADH to NAD. Specific activities of other enzymes studied were either not affected or moderately diminished in the sedimented bacilli. It is proposed that the glyoxylate synthesis in this model serves mainly to provide a substrate for the regeneration of NAD that may be required for the orderly completion of the final cycle of bacillary replication before oxygen limitation stops growth completely. This orderly shutdown is essential to continued survival of M. tuberculosis in a quiescent form.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- BEKIERKUNST A., ARTMAN M. Tissue metabolism in infection. DPNase activity, DPN levels, and DPN-linked dehydrogenases in tissues from normal and tuberculous mice. Am Rev Respir Dis. 1962 Dec;86:832–838. doi: 10.1164/arrd.1962.86.6.832. [DOI] [PubMed] [Google Scholar]
- DUBOS R. J. Effect of the composition of the gaseous and aqueous environments on the survival of tubercle bacilli in vitro. J Exp Med. 1953 Mar;97(3):357–366. doi: 10.1084/jem.97.3.357. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DUBOS R. J. The effect of organic acids on mammalian tubercle bacilli. J Exp Med. 1950 Oct 1;92(4):319–332. doi: 10.1084/jem.92.4.319. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Diaz G. A., Wayne L. G. Isolation and characterization of catalase produced by Mycobacterium tuberculosis. Am Rev Respir Dis. 1974 Sep;110(3):312–319. doi: 10.1164/arrd.1974.110.3.312. [DOI] [PubMed] [Google Scholar]
- Egan R. M., Phillips A. T. Requirements for induction of the biodegradative threonine dehydratase in Escherichia coli. J Bacteriol. 1977 Nov;132(2):370–376. doi: 10.1128/jb.132.2.370-376.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Erfle J. D. Acetyl-CoA and propionyl-CoA carboxylation by Mycobacterium phlei. Partial purification and some properties of the enzyme. Biochim Biophys Acta. 1973 Aug 23;316(2):143–155. doi: 10.1016/0005-2760(73)90004-0. [DOI] [PubMed] [Google Scholar]
- GOLDMAN D. S., WAGNER M. J. Enzyme systems in the mycobacteria. XIII. Glycine dehydrogenase and the glyoxylic acid cycle. Biochim Biophys Acta. 1962 Dec 4;65:297–306. doi: 10.1016/0006-3002(62)91048-x. [DOI] [PubMed] [Google Scholar]
- Gopinathan K. P., Sirsi M., Vaidyanathan C. S. Nicotinamide-adenine dinucleotide glycohydrolase of Mycobacterium tuberculosis H37Rv. Biochem J. 1964 May;91(2):277–282. doi: 10.1042/bj0910277. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grosset J. The sterilizing value of rifampicin and pyrazinamide in experimental short-course chemotherapy. Bull Int Union Tuberc. 1978 Mar;53(1):5–12. [PubMed] [Google Scholar]
- Konno K., Oizumi K., Shimizu Y., Tamagawa S., Oka S. Niacin metabolism in mycobacteria. Mechanism of excess niacin production by human tubercle bacilli. Am Rev Respir Dis. 1966 Jan;93(1):41–46. doi: 10.1164/arrd.1966.93.1.41. [DOI] [PubMed] [Google Scholar]
- LYON R. H., LICHSTEIN H. C., HALL W. H. Factors affecting the growth of Mycobacterium tuberculosis in aerobic and stationary cultures. Am Rev Respir Dis. 1961 Feb;83:255–260. doi: 10.1164/arrd.1961.83.2P1.255. [DOI] [PubMed] [Google Scholar]
- Lessie T. G., Whiteley H. R. Properties of threonine deaminase from a bacterium able to use threonine as sole source of carbon. J Bacteriol. 1969 Nov;100(2):878–889. doi: 10.1128/jb.100.2.878-889.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MCCUNE R. M., Jr, MCDERMOTT W., TOMPSETT R. The fate of Mycobacterium tuberculosis in mouse tissues as determined by the microbial enumeration technique. II. The conversion of tuberculous infection to the latent state by the administration of pyrazinamide and a companion drug. J Exp Med. 1956 Nov 1;104(5):763–802. doi: 10.1084/jem.104.5.763. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MCCUNE R. M., Jr, TOMPSETT R. Fate of Mycobacterium tuberculosis in mouse tissues as determined by the microbial enumeration technique. I. The persistence of drug-susceptible tubercle bacilli in the tissues despite prolonged antimicrobial therapy. J Exp Med. 1956 Nov 1;104(5):737–762. doi: 10.1084/jem.104.5.737. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McCord J. M., Fridovich I. Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem. 1969 Nov 25;244(22):6049–6055. [PubMed] [Google Scholar]
- Murthy P. S., Sirsi M., Ramakrishnan T. Effect of age on the enzymes of tricarboxylic acid and related cycles in Mycobacterium tuberculosis H37Rv. Am Rev Respir Dis. 1973 Sep;108(3):689–690. doi: 10.1164/arrd.1973.108.3.689. [DOI] [PubMed] [Google Scholar]
- O'Connell B. T., Paznokas J. L. Glyoxylate cycle in Mucor racemosus. J Bacteriol. 1980 Jul;143(1):416–421. doi: 10.1128/jb.143.1.416-421.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
- PARKER C. A. Anaerobiosis with iron wool. Aust J Exp Biol Med Sci. 1955 Feb;33(1):33–37. doi: 10.1038/icb.1955.4. [DOI] [PubMed] [Google Scholar]
- Phillips A. T., Egan R. M., Lewis B. Control of biodegradative threonine dehydratase inducibility by cyclic AMP in energy-restricted Escherichia coli. J Bacteriol. 1978 Sep;135(3):828–840. doi: 10.1128/jb.135.3.828-840.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Phillips A. T., Wood W. A. The mechanism of action of 5'-adenylic acid-activated threonine dehydrase. J Biol Chem. 1965 Dec;240(12):4703–4709. [PubMed] [Google Scholar]
- Roche T. E., Williams J. O., McFadden B. A. Effect of pH and buffer upon Km and inhibition by phosphoenolpyruvate of isocitrate lyase from Pseudomonas indigofera. Biochim Biophys Acta. 1970 Apr 22;206(1):193–195. doi: 10.1016/0005-2744(70)90100-2. [DOI] [PubMed] [Google Scholar]
- SALKIN D., WAYNE L. G. The bacteriology of resected tuberculous pulmonary lesions. I. The effect of interval between reversal of infectiousness and subsequent surgery. Am Rev Tuberc. 1956 Sep;74(3):376–387. doi: 10.1164/artpd.1956.74.3.376. [DOI] [PubMed] [Google Scholar]
- SEVER J. L., YOUMANS G. P. Enumeration of viable tubercle bacilli from the organs of nonimmunized and immunized mice. Am Rev Tuberc. 1957 Oct;76(4):616–635. doi: 10.1164/artpd.1957.76.4.616. [DOI] [PubMed] [Google Scholar]
- Sandler N., Keynan A. Cell wall synthesis and initiation of deoxyribonucleic acid replication in Bacillus subtilis. J Bacteriol. 1981 Nov;148(2):443–449. doi: 10.1128/jb.148.2.443-449.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WINDMAN I., BEKIERKUNST A., ARTMAN M. PARTICULATE, SOLUBLE AND PLASMA NICOTINAMIDE-ADENINE DINUCLEOTIDE GLYCOHYDROLASE IN NORMAL AND TUBERCULOUS GUINEA-PIGS. Biochim Biophys Acta. 1964 Feb 10;82:405–408. doi: 10.1016/0304-4165(64)90315-0. [DOI] [PubMed] [Google Scholar]
- Wayne L. G., Diaz G. A. Autolysis and secondary growth of Mycobacterium tuberculosis in submerged culture. J Bacteriol. 1967 Apr;93(4):1374–1381. doi: 10.1128/jb.93.4.1374-1381.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wayne L. G. Dynamics of submerged growth of Mycobacterium tuberculosis under aerobic and microaerophilic conditions. Am Rev Respir Dis. 1976 Oct;114(4):807–811. doi: 10.1164/arrd.1976.114.4.807. [DOI] [PubMed] [Google Scholar]
- Wayne L. G., Sramek H. A. Antigenic differences between extracts of actively replicating and synchronized resting cells of Mycobacterium tuberculosis. Infect Immun. 1979 May;24(2):363–370. doi: 10.1128/iai.24.2.363-370.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wayne L. G. Synchronized replication of Mycobacterium tuberculosis. Infect Immun. 1977 Sep;17(3):528–530. doi: 10.1128/iai.17.3.528-530.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- ZATMAN L. J., KAPLAN N. O., COLOWICK S. P. Inhibition of spleen diphosphopyridine nucleotidase by nicotinamide, an exchange reaction. J Biol Chem. 1953 Jan;200(1):197–212. [PubMed] [Google Scholar]