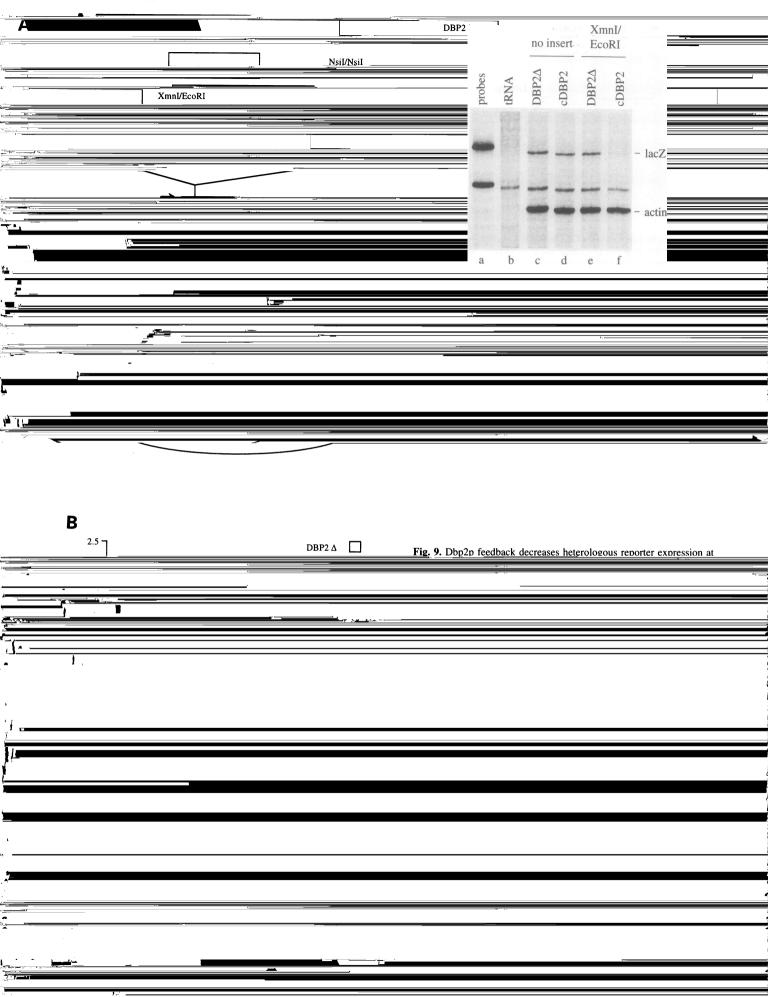
Autoregulation of expression of the yeast Dbp2p 'DEAD-box' protein is mediated by sequences in the conserved *DBP2* intron

Swiss Institute for Experimental Cancer Research (ISREC),

for its length, 1001 nucleotides, which is twice that of any other known intron in *S.cerevisiae* (Rymond and Posbash 1992) These unusual features suggest that the

		67 · · · · ·	
<u>141</u>			
1			
٠			
<u>()</u>			
<u>v</u>			
-			
1 .)			
1. 			
	·		
1			
1			
k.			
· · · · · · · · · · · · · · · · · · ·			
1			
· .			
-			
1			
1			
1. 1			
p - 0			
-			
			
3 ~~			
		1. V.	• · · · · · · · · · · · · · · · · · · ·
c. :			
·		<i>E</i>	
· · · · · · · · · · · · · · · · · · ·	17 A	6	
	¹ Corresponding author		narticipate in regulation of DBP2 expression. or both. The
i	Corresponding aution		DATICIDALE INTEGRATION OF TADA 2 EXTREMINED TO DOM. THE
· ~ · ·			
ł			
5			
·•			
<u> </u>			
			intron does not contain conserved sequences or long open
· · · · · · · · · · · · · · · · · · ·			maker, aven her yvinger vener for borrenees of fong open
<u>.</u>			<u></u>
6.6.		10.0	


4		Autoregulation of DBP2 expression
	DBP2/DBP2 DBP2A DBP2A DBP2A DBP2A DBP2A DBP2A	C $\begin{bmatrix} 0\\ 5\\ 1\\ 2\\ 4\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\$
prowth at 35°C for 4 days. (B) Western h	olot probed with <u>MaDL (a. narental diolojd: b.)</u>	heterozveous diploid: c-f. haploid progenv o f a heterozveous
Info	مری مراجع	

				······	
<u></u>			``# ! 2		
1. 		~ <u> </u>			
X 3 ¹¹		<u> </u>			
	• • • • • • • • • • • • • • • • •				
1 /m					
41 + <u>.</u>					
مر _ا					
<u> </u>					
<u>kt X</u>					
*					
··· •					
<u>*</u>					
1					
راد ا					
<u> </u>		N	v ·		· · · · · · · · · · · · · · · · · · ·
<u>6</u>					
<u>1</u>	۱. ⁻				
P	, 1 a				
L	۱۱ _. مستعدد المحالي				
······································	*				
T					
	<u> </u>		,		
· · · · · · · · · · · · · · · · · · ·	<u> </u>				
. <u>L</u> .QUA					_
-1 <u>-2</u>					
l					
# 11 g					
ίû	6				
<u> </u>	^ · · · ·				
ž.	P				
1 4-					
(.					
(A) [#]			a		
1					

Autoregulation of DBP2 expression

	$\frac{\text{wt}}{\text{+}-\text{+}-\text{+}-\text{+}-\text{intron}}$ $\begin{array}{c} & & \\$	DBP2 Δ wt DBP2 c DBP2 0 3 6 9 0 3 6 9 0 3 6 9 hours
		Fig. 6, Western blot probed with KT3 showing that endogenous
Fig. 4. \	a b c d e f Western blot probed with KT3 antibody to detect exogenous	Dbp2p can suppress exogenous $DBP2$ expression. KT3-tagged wild- type Dbp2p was expressed from the GAL1 promoter in strains with the null ($DBP2\Delta$), wild-type ($DBP2$) or intronless allele ($cDBP2$) at the chromosomal $DBP2$ locus (yIB12/1, 12/2 and 37, respectively). The plasmid (pIG85) copy of $DBP2$ contains the $DBP2$ intron. Exogenous
j Dbp2p i	n a wild-type strain containing plasmids expressing DBP2	DBP2 production was induced by growing cells in galactose for the
	2/KT3p 2p 2/KT3p RGG ⁻	
	extant a b	
	Lanes a and b: wild-type DBP2: lanes c and d: GNT mutant	т. н
DBP2; 1 than w <u>il</u>	anes e and f: RGG ⁻ mutant <i>DBP2</i> . RGG ⁻ Dbp2p runs faster <u>d-type and GNT point-mutant protein because it lacks 49</u>	A Neil Neil
1 <u>1</u>		

I.Barta and R.Iggo

25°C 35°C **JBP2** probe actin probe wtDBP2 DBP2A wtDBP2 DBP2A DBP2 cDBP2 processing event (Fournier and Maxwell, 1993; Sollner-Webb, 1993). The most economical model predicts that autoregulation exogenous DBP2 of DBP2 expression exploits one of the general functions ctin of the DBP2 gene. This is difficult to test until the normal function of the DBP2 gene is known. Northern blotting of the DBP2 null strain suggests that there is a defect in splicing of the RP28 intron. although several other introns are spliced normally (unpublished data). Since pre-mRNA secondary structure can strongly influence the efficiency with which splicing signals are used (Eperon et al., 1988: Chebli et al., 1989; Deshler and Rossi, 1991: Goguel et al., 1993), loss of an RNA helicase could readily produce a rather selective splicing defect, and autoregulation of production of such a helicase would amount to a simple

The mechanism of *DBP2* autoregulation is not clear from our data. Transcriptional repression or pausing is

Autoregulation of DBP2 expression

Fig. 10. Dbp2p feedback does not lead to accumulation of DBP2

 Tabla I	Venet staring used in the present studies	
Strain	Yeast strains used in the present studies Genotype	Source/cross
ASZ3 vIB12	a/α. ade2-/ade2-1 ura3-1/ura3-1 leu2-3,112/leu2-3,112 trp1-1/trp1-1 his3-11,15/his3-11,15 can1-100/can1-100 a/α. ade2-1/ade2-1 ura3-1/ura3-1 leu2-3.112/leu2-3.112 trp1-1/trp1-1 his3-11,15/his3-11.15 can1-100/	P.Linder ASZ3 + pIB3
M		
vIB15	can1-100 DBP2/dbp2Δ1::URA3 a/α.ade2-1/ade2-1_ura3-1/ura3-1_leu2-3.112/leu2-3.112 trp1-1/trp1-1_his3-11.15/his3-11.15 can1-100/	$ASZ3 \pm pIB8$
<u>v</u> [B36	can1-100 DBP2/cDBP2 a/0. ade2-1/ade2-1 ura3-1/ura3-1 leu2-3.112/leu2-3.112 trp1-1/trp1- his3-11.15/his3-11.15 can1-100/	vIB15 ^a
<u> </u>		
	can1-100 cDBP2/cDBP2	
vIB12/2	2 α ade2-1 ura3-1 leu2-3.112 trp <u>1-1 his3-11.15 can1-100 DBP2</u>	<u>y[B12</u>
1 7		
	·	
<i>ı</i>	3 (2010)	

for selection of other markers (Guthrie and Fink, 1991). For induction of the GAL1 promoter, cells were transferred directly from 2% glucose	L1 is controlled at the level of splicing and turnover of the precursor RNA. EMBO J., 6, 3493-3498. Chapon.C. and Legrain.P. (1992) A novel gene. spn91-1. suppresses the
to 2% galactose-containing media. Two-step gene replacement was done	splicing defect and the pre-mRNA nuclear export in the prn9-1 mutant.
by selecting on ura ⁻ medium for integration of pIB8 linearized at codon 496 (the intron splits codon 425) followed by counterselection on	EMBO J., 11, 3279–3288. Chebli.K., Gattoni.R., Schmitt.P., Hildwein.G. and Stevenin.J. (1989)
medium containing 5-fluoro-orotic acid. Construction of the cDBP2 and	The 216-nucleotide intron of the E1A pre-mRNA contains a hairpin
DBP2A strains was verified by Southern blotting.	structure that permits utilization of unusually distant branch_accentors
Northern blotting and RNase protection	Mol. Cell. Biol., 9, 4852–4861. Chen I H and I in R I (1990) The yeast PRP2 protein a nutative RNA-
Northern blotting and RNase protection	Mol. Cell. Biol., 9, 4852–4861. Chen I H and I in R I (1990) The yeast PRP? protein a putative RNA-
Northern blotting and RNase protection	Mol. Cell. Biol., 9, 4852–4861. Chen I H and Lin R I (1990) The yeast PRP2 protein a nutative RNA-
Northern blotting and RNase protection	Mol. Cell. Biol., 9, 4852–4861. Chen I H and Lin R I (1990) The yeast PRP2 protein a nutative RNA-
	Mol. Cell. Biol., 9, 4852–4861. Chen I H and Lin R I (1990) The yeast PRP2 protein a putative RNA.
Northern blotting and RNase protection	Mol. Cell. Biol., 9, 4852–4861. Chen I H and Lin R I (1990) The veast PRP2 protein a putative RNA.
The Northern blots were probed with fragments corresponding to the last 150 bp of the DBP2 open reading frame (Figure 3A) and the last	Chen I H and I in R I (1990)) The veast PRP2 protein a nutative RNA.
The Northern blots were probed with fragments corresponding to the last 150 bp of the <i>DBP2</i> open reading frame (Figure 3A) and the last 0.9 kb of the actin open reading frame (Figure 3B). <i>DBP2</i> RNA	Chen I H and I in R I (1990) The veast PRP2 protein a nutative RNA.

; ,

Racta	and	RJ	സ	
-				

	of a yeast splicing mutation (prp8-1) encodes a putative ATP-	
	dependent RNA helicase. Nature, 349, 715–717.	
J		
1 1 1	······································	
۱ <u>ــــــــــــــــــــــــــــــــــــ</u>		
	the human liver/bone/kidnev alkaline phosphatase gene. J. Biol. Chem.	
	266 , 4207–4213. Larson, G.P., Itakura, K., Ito.H. and Rossi, J.J. (1983) <i>S. cerevisiae</i> actin-	- <u> </u>
	E.coli lacZ gene fusions: synthetic-oligonucleotide-mediated deletion	
	of the 309 base pair intervening sequence in the actin gene. Gene, 22, 31–39. Leeds.P. Peltz.S.W., Jacobson.A. and Culbertson.M.R. (1991) The	
	product of the yeast UPF1 gene is required for rapid turnover of	
- 	mRNAs containing a premature translational termination codon. Genes	·
	Dev., 5, 2303–2314. Linder.P., Lasko.P.F., Ashburner.M., Lerov.P., Nielsen.P.J., Nishi.K.,	
	Schnier.J. and Slonimiski.P.P. (1989) Birth of the D-E-A-D box.	
	Nature. 337. 121–122.	
	MacArthur, H. and Walter, G. (1984) Monoclonal antibodies specific for	
	the carboxy terminus of Simian Virus 40 large T antigen. J. Virol	
	52 , 483–491.	