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Abstract

Acute myeloid leukemia (AML) is a hematologic malignancy that is the most common type of 

acute leukemia diagnosed in adults and the second most common type in children. The overall 

survival is poor and treatment is associated with significant complications and even death. In 

addition, a significant number of patients will not respond to therapy or relapse. In this review, 

several new signaling proteins aberrantly regulated in AML are described, including CREB, 

Triad1, Bcl-2 family members, Stat3, and mTOR/MEK. Identifying more effective and less toxic 

agents will provide novel approaches to treat AML.
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Introduction

Acute Myeloid Leukemia (AML) is a hematologic malignancy that originates in 

hematopoietic stem and myeloid progenitor cells (1-3). AML is the most common type of 
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acute leukemia diagnosed in adults and the second most common leukemia in children. 

Despite intensive chemotherapy and stem cell transplantation, the overall survival is less 

than 30% for adults and 60% for children (3). In addition, the treatment for AML results in 

significant morbidity and late effects, including secondary malignancies or graft vs. host 

disease after stem cell transplant. The major challenge in finding a cure for AML is the 

development of resistant disease and subsequent relapse. Current advances in technology 

include genomic sequencing, epigenetic and phenotypic characterization, and identification 

of novel signaling pathways. Current efforts in improving AML therapy focus on inhibiting 

proteins that promote drug resistance and survival of AML initiating cells. Here, we review 

select signaling molecules and pathways including CREB, Triad1, Bcl-2 family members, 

Stat3, and mTOR/MEK that are aberrantly regulated in AML and potential targets for 

therapy in patients with resistant disease.

CREB

Cyclic AMP Response Element Binding Protein (CREB) is a leucine zipper transcription 

factor that is critical for cell proliferation, survival and differentiation (4). CREB can act as 

an activator or repressor to regulate genes that control cell cycle, metabolism, and apoptosis 

in diverse cell types (5, 6). CREB-dependent signaling is important for gluconeogenesis, 

memory, neuronal plasticity, and hippocampal development. Upstream kinases that activate 

CREB include MAP kinase, RSK, adenylate cyclase, and CAMKIV (4, 7). A critical 

phosphorylation site in CREB identified in leukemia cells is serine 133, through MAP 

kinase/RSK activation (4-6). CREB phosphorylation leads to interaction with the histone 

acetyltransferase, CREB Binding Protein (CBP) and induction of specific CREB target 

genes (5, 6).

CREB is overexpressed in acute leukemia cells from the majority of patients with both AML 

and acute lymphocytic leukemia (8, 9). The expression of CREB was identified primarily at 

the protein level but in certain AML samples, also at the mRNA level (10, 11). Expression 

of CREB protein in leukemia cells from AML patients was associated with decreased event-

free survival and increased risk of relapse (5). Overexpression of CREB in AML cell lines 

resulted in increased cell proliferation and growth in the absence of cytokines (5). Lentiviral 

transduction of CREB in primary hematopoietic cells results in increased myeloid 

progenitors and colony formation (5). Transgenic mice expressing CREB in myeloid 

progenitors leads to a myeloproliferative syndrome after approximately 1 year, but not 

AML, suggesting additional cooperating oncogenes required for full transformation (5). 

Retroviral insertional mutagenesis led to the finding that the proto-oncogene Sox4 

cooperates with CREB towards leukemogenesis (12). In addition, Sox4 and CREB are both 

highly expressed in AML cells from a significant number of patients with the disease (12).

Another interesting mechanism of CREB regulation is by microRNA34b (miR34b) (13, 14). 

In AML cells, the promoter of miR34b is highly methylated leading to increased AML cell 

proliferation. Mir34b is a negative regulator of CREB expression and binds directly to the 3’ 

UTR of CREB mRNA. Mir34b is upregulated in cells from patients with JMML and MPN/

MDS, but downregulated in AML cells. These data suggest that CREB is critical for full 

transformation to AML (13).
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Since CREB is overexpressed in leukemia cells from the majority of AML patients and is 

associated with a worse prognosis, CREB might be a potential target for therapy. 

Knockdown of CREB using shRNA lentiviral constructs significantly inhibited the growth 

of AML cells (15, 16). This appears to be in part due to inhibition of expression of cell cycle 

genes, such as cyclins A and D. Furthermore, in vivo knockdown of CREB in an aggressive 

model of BCR/ABL-driven leukemia resulted in a statistically significant increase in median 

survival (16). Transduction of CREB shRNA in normal hematopoietic stem cells did not 

affect long-term engraftment, although there were transient effects on short-term 

engraftment and myelopoiesis (16). Therefore, CREB is critical for AML cells but is not 

required for normal hematopoietic stem cell activity. Taken together, these results suggest 

that CREB and CREB-dependent pathways are potential avenues for drug development for 

treatment of AML. Small molecule inhibitors of CREB are currently under development 

(17).

Triad1

The ARIH2 gene encodes Triad1; an E3 ubiquitin ligase that is expressed in bone marrow 

progenitor cells and increases in expression during granulopoiesis (18). Interaction of Triad1 

with Ubc7 or Ubc13 (E2 ligases) results in K48 or K63 linked ubiquitin chains, respectively 

(19, 20). K48-linked chains lead to proteasomal or lysosomal degradation, and K63 only the 

latter. Consistent with this, Triad1 participates in lysosomal degradation of EGF-R and GH-

R in epithelial cells, but may also facilitate proteasomal degradation of Mdm2 in multiple 

cell types (21, 22). Therefore, Triad1-inhibition results in recycling and sustained signaling 

by these growth factor receptors, and enhances degradation of Mdm2 substrates such as p53. 

Furthermore, Triad1 inhibits Mdm2 and Mdm2 degrades p53. Increased Triad1 stabilizes 

p53 by impairing Mdm2 activity, which is anti-oncogenic. Inhibition of Triad1 stabilizes 

Mdm2 resulting in increased p53 degradation, which would facilitate cell survival along 

with stabilization of growth factor receptors. Triad1 also associates with cullin proteins (23). 

The significance of this interaction is unknown, but suggests that Triad1 may broadly effect 

protein-ubiquitination by regulating cullin ligases.

A number of laboratories found that engineered overexpression of Triad1 in bone marrow 

progenitor cells decreases colony formation and impairs cytokine stimulated proliferation 

(18, 21, 24). The mechanism for this is unknown and no hematopoietic specific Triad1 

substrates have been identified. Disruption of the ARIH2 gene in mice is embryonic lethal 

due to hepatocyte apoptosis at ~E16 (25). Despite this, E16 fetal liver-hematopoietic cells 

are normal in colony forming assays and repopulate hematopoiesis in irradiated wild type 

mice (25). However, recipients of Triad1−/− hematopoietic cells die rapidly of an 

inflammatory process that involves dendritic cell activation (25).

Clinical correlative studies suggest that Triad1 may function as a leukemia suppressor. For 

example, ARIH2 is located on chromosome 3p21 and deletion of this region is reported in 

AML and blast crisis CML (26-28). And, examination of publically available databases 

defines a specific decrease in Triad1 mRNA in AML with chromosomal translocations 

involving the MLL1- gene (11q23-AML), MYST4/CREBB gene translocation, and FLT3 

internal tandem duplication (ITD) (29). The first two are associated with increased 
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expression of a set of homeodomain transcription factors that includes HoxB4, B4, A7-11 

and Meis1 (30, 31). And, incidence of ITD-FLT3 mutation is increased in Hox-

overexpressing-AML (29). Additionally, a set of twins were reported both of whom had the 

same MLL1-gene translocation, but leukemia only developed in the twin who also had a 

deletion of 3p21 (28).

Functional studies of bone marrow progenitor cells also support a role for Triad1 as a 

leukemia suppressor. HoxA10 activates ARIH2 gene transcription during myelopoiesis in a 

tyrosine phosphorylation dependent manner (24). HoxA10 is a substrate for Shp2 protein 

tyrosine phosphatase, and HoxA10-induced Triad1 expression is blocked by constitutive 

activation of Shp2 (24,32-35). Engineered overexpression of HoxA10 in bone marrow 

progenitor cells increases cytokine induced proliferation in vitro, and results in a 

myeloproliferative neoplasm with neutrophilia in vivo (35-38). However, effects of 

HoxA10-overexpression are paradoxically antagonized by the increase in Triad1 expression 

that is observed in these cells (24). This suggests the possibility that Triad1 antagonizes 

generally pro-proliferative effects of Hox proteins via ubiquitin-mediated degradation of 

proteins that are involved in hematopoietic stem and progenitor cell expansion.

The myeloproliferative neoplasm that develops in mice with HoxA10-overexpressing bone 

marrow progresses to AML with time (35, 36). This latency suggests that additional 

mutations are required for induction of AML. Such mutations may include events that 

silence leukemia suppressors, such as Triad1. Perhaps in support of this hypothesis, AML 

develops rapidly in mice transplanted with bone marrow that is co-overexpressing HoxA10 

plus a constitutively active form of Shp2 (35). Both Shp2 activation and increased HOX 

expression are associated with FLT3 internal tandem duplication in human AML (19, 39, 

40).

ITD-FLT3 mutation and increased HOX expression are associated with drug resistance and 

poor outcomes in AML Defining relevant substrates for Triad1 in leukemic progenitor cells 

may suggest novel molecular therapeutic targets to address this problem.

Targeting MLL leukemias with BH3-mimetics and survival signaling 

inhibitors

Rearrangements of the mixed lineage leukemia (MLL) gene on chromosome 11q23 occurs in 

up to 10% of acute myelogenous leukemia (AML), and is generally associated with a 

relatively unfavorable prognosis (41). Consequently, this AML sub-type may represent a 

prototype of intrinsically resistant AML. The MLL rearrangement is associated with multiple 

translocation partners, most frequently AF9 in AML (42), which result in a variety of 

genetic and epigenetic aberrations culminating in increased cell survival (43). Over the last 

decade, rational and highly specific therapeutic strategies targeting MLL leukemias have 

focused on disrupting MLL fusion partners and enzymes implicated in leukemogenesis. 

These targets have included menin, the histone methyltransferase DOT1L, the 

transcriptional elongation factor p-TEFb, and bromodomain proteins (e.g. BRD4), among 

others (42).
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Resistance to therapy of AML in general, and MLL leukemias in particular, may also stem 

from aberrant expression of Bcl-2 family proteins (44). This consideration has prompted 

interest in BH3-mimetics, such as the Bcl-2/Bcl-xL antagonist ABT-737 and the Bcl-2-

selective antagonist ABT-199 as therapeutic candidates in AML (45, 46). BH3-mimetics 

mimic the actions of BH3-only pro-apoptotic proteins such as Bim and effectively neutralize 

the pro-survival functions of anti-apoptotic multi-domain Bcl-2 family members. Past efforts 

have highlighted the value of BH3-profiling in predicting whether a particular tumor type 

may or may not be susceptible to such BH3-mimetics (47). Interestingly, MLL leukemias 

have very recently been shown to be extremely sensitive to ABT-199, suggesting that these 

cells are highly dependent upon Bcl-2 functions for their survival (48).

While the use of such BH3-mimetics in combination with standard chemotherapy to 

overcome resistance in MLL or other forms of AML represents a logical strategy, an 

alternative approach involves disrupting survival signaling pathways, including the MAPK 

and PI3K/AKT/mTOR pathways, with the goal of further enhancing BH3-mimetic anti-

leukemic potency. For example, activation of the MEK1/2/ERK1/2 pathway regulates the 

abundance of the pro-apoptotic molecule Bim by phosphorylating it and promoting its 

proteasomal degradation (49). Indeed, MEK1/2 inhibitors have been shown to interact 

synergistically with ABT-737 in AML cells, in part by diminishing the expression of the 

anti-apoptotic protein Mcl-1 (50). Similarly, activity of the PI3K/AKT/mTOR pathway is 

known to be important for AML cell survival (51) as well as maintenance of expression of 

Mcl-1 through a GSK-dependent pathway (52). Notably, PI3K inhibitors have recently been 

reported to increase the anti-leukemic activity of ABT-737 in diverse AML cell types, 

including those exhibiting MLL rearrangements (e.g. MV4-11) (53). Given the intrinsic 

sensitivity of MLL leukemias to BH3-mimetics, such dual targeting may be highly 

appropriate in this setting. Collectively, these findings raise the possibility that in addition to 

targeting proteins directly implicated in MLL-related leukemogenesis (e.g. menin, DOT1L 

etc.), a strategy combining clinically relevant BH3-mimetics with PI3K or MEK1/2 

inhibitors could prove to be particularly effective against this intrinsically resistant form of 

AML.

Targeting MAPK and mTOR pathways in AML

Recent studies have shown that AML relapse is associated with the gain of additional 

mutations and clonal evolution, due to the cytotoxic chemotherapy that patients receive and 

survival of preleukemic clones (54-57). Thus, the need for novel and effective therapies for 

AML remains a high clinical priority. This is particularly true for selective targeted 

therapeutic approaches that can be combined with chemotherapy.

Several mutations lead to constitutive activation of signals that promote expansion and 

survival of the leukemic clones (58, 59). Among them, the mitogen-activated protein kinase 

(MAPK) and mammalian target of rapamycin (mTOR) pathways play prominent roles 

(60-63). MAPK pathways include at least four major signaling cascades: extracellular 

signal-related kinases (ERK) 1 and 2, c-JUN N-terminal kinase (JNK) 1, 2, and 3, p38 

MAPK, and ERK5 (63). Extensive studies from many groups have shown that molecular or 

pharmacological targeting of MAPK signaling cascades, alone or in combination with other 
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drugs, results in enhanced anti-leukemic responses in AML (64, 65). Work from our 

laboratory has shown that the downstream effector of MAPK pathways, Mnk kinases, may 

be attractive targets for the treatment of AML (66, 67). Specifically molecular or 

pharmacological targeting of Mnk kinases promotes anti-leukemic responses in pre-clinical 

AML models (66, 67).

mTOR can form two distinct multiprotein complexes: mTOR complex 1 (mTORC1) and 2 

(mTORC2) (60, 61). Although the complexes include mTOR as their central common 

element, they have different purposes and functions (60, 61). Activation of mTORC1 

complexes controls mRNA translation of oncogenic proteins, cell cycle progression, 

autophagy, and cellular growth and metabolism (60, 61), while mTORC2 complexes 

regulate cellular metabolism, and promotes malignant cell survival (60, 61). Inhibition of 

mTORC1 pathways using rapamycin or other rapalogs alone or in combination with other 

anti-leukemic agents, including chemotherapeutic regimens, have shown potent anti-

leukemic properties in vitro and in vivo (reviewed in 68). Recent studies have also raised the 

possibility that catalytic mTOR inhibitors alone or in combination with other 

chemotherapeutic agents may induce more potent anti-leukemic effects than single- or 

combined-rapamycin treatment (69-71). This is important as such agents inhibit both 

mTORC1 and mTORC2 complexes and, potentially, other mTOR complexes that may exist 

but have not been yet identified. Other studies have also described potent anti-leukemic 

properties of dual PI3K-mTORC1/2 inhibitors, such as NVP-BGT226 (72) and NVP-

BEZ235 (73), in AML.

One approach that may result in more potent anti-leukemic effects includes co-targeting 

negative feedback regulatory cascades that may be activated during AML treatment of cells 

with chemotherapy, or selective targeted therapy (67, 68, 75). The combination of MAPK 

signaling inhibitors and mTORC1/2 inhibitors is such an example (76-78). In fact, the 

combination of the catalytic mTOR inhibitor AZD8055 with the MEK inhibitor selumetinib 

was shown to exert synergistic proapoptotic effects in AML cells (78). Altogether, there is 

accumulating evidence supporting the development of future clinical trials combining such 

agents for the treatment of AML.

Targeting STAT3 in myeloid malignancies

Activation of JAK/STAT signaling is a hallmark of the myeloproliferative neoplasms 

(MPNs). Mutations in JAK2, MPL, and CALR, which account for the vast majority of MPN 

cases, all result in increased STAT activation and subsequent cytokine hypersensitivity or 

independence (79, 80). The identification of the V617F activating allele of JAK2 in primary 

myelofibrosis (PMF) led to rapid clinical development of JAK inhibitors, with the hope that 

such drugs would be analogous to imatinib in CML. Unfortunately, despite providing 

important clinical benefits and a survival advantage (81, 82), the only FDA approved JAK 

inhibitor, ruxolitinib, does not cure PMF (83). In addition, recent studies have found that 

myelofibrosis cells develop JAK inhibitor resistance (84) as well as have an intrinsic 

resistance (85), which in both cases, allows for continued STAT3/5 phosphorylation.
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Activating JAK2 mutations are less commonly seen in other myeloid malignancies, with one 

large study reporting an incidence of 3% in de novo AML (86). Despite this low incidence 

of JAK mutations, an intriguing report demonstrated that STAT3 activation is common in de 

novo AML (87). Moreover, several studies have revealed that other oncogenic events can 

drive enhanced STAT phosphorylation. For example, the t(8;21) fusion has been shown to 

enhance the JAK/STAT pathway (88). FLT3 ITD also leads to enhanced JAK/STAT 

signaling (89). The knowledge that the JAK/STAT pathway is activated in many cases of 

AML, and data from pre-clinical studies that have shown an anti-tumor effect for JAK 

inhibitors (for example, see ref 88), have led to initiation of clinical trials of JAK inhibitors 

in AML. However, in a Phase 2 study, ruxolitinib only showed modest anti-leukemia 

activity as a single agent, with 3 significant responses in a study of 18 post-MPN AML 

patients (90).

Although there has been a focus on the upstream kinase JAK2 as a target for therapy, many 

studies suggest that directly targeting STAT3 may be effective. Indeed, several types of 

STAT inhibitors are under development as cancer therapies (91). For example, the small 

molecule STAT3 inhibitor C188-9 induced apoptosis in multiple AML cell lines and 

primary cells (92). A different STAT3 inhibitor, OPB-31121, inhibited STAT3 and STAT5 

phosphorylation and had strong anti-growth effect on human leukemia cells, including those 

with FLT3-ITD or JAK2 V617F (93). Targeting STAT3 may also be key in treatment of 

chemotherapy resistant AML. A recent study revealed that feedback activation of STAT3 in 

cancer cells facilitated drug resistance in tumors with activation of a variety of kinases, 

including EGFR, MET and KRAS (94). Thus, combining STAT3 inhibitor with other 

targeted therapies or conventional chemotherapy may be effective in combating refractory 

and relapsed AML.

In conclusion, although advances have been made in the treatment of certain types of cancer 

due to development of targeted therapies, patients with AML continue to receive intensive 

chemotherapy and stem cell transplantation. These approaches result in significant toxicities 

and long-term complications. The primary challenge in finding a cure for AML, is the 

development of resistance following chemotherapy. The identification and characterization 

of signaling molecules discussed in this review provide potentially novel targets for drug 

development to treat AML patients in the future.
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Research Highlights

Standard treatment for AML is associated with significant toxicities and late effects.

Characterization of signaling pathways aberrantly regulated in AML cells could lead to 

identification of novel targets for therapy.

CREB is a transcription factor that is overexpressed in AML cells and is required for 

proliferation and survival, suggesting that inhibiting this protein is a novel approach to 

treat AML.

Triad1 is an E3 ubiquitin ligase and leukemia suppressor that is decreased in AML with 

MLL1 gene rearrangements, MYST4/CREBB gene translocations, and FLT3 internal 

tandem duplications.

BH3-mimetics in combination with chemotherapy overcomes resistance in AML cells.

Downstream effectors of MAPK pathways, Mnk kinases, may be attractive targets for 

treatment of AML.

Stat3 activation is common in newly diagnosed AML and small molecules to inhibit 

STAT3 induce apoptosis in AML cells.
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