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Abstract

The primary adrenal cortical steroid hormones, aldosterone, and the glucocorticoids cortisol and 

corticosterone, act through the structurally similar mineralocorticoid (MR) and glucocorticoid 

receptors (GRs). Aldosterone is crucial for fluid, electrolyte, and hemodynamic homeostasis and 

tissue repair; the significantly more abundant glucocorticoids are indispensable for energy 

homeostasis, appropriate responses to stress, and limiting inflammation. Steroid receptors initiate 

gene transcription for proteins that effect their actions as well as rapid non-genomic effects 

through classical cell signaling pathways. GR and MR are expressed in many tissues types, often 

in the same cells, where they interact at molecular and functional levels, at times in synergy, 

others in opposition. Thus the appropriate balance of MR and GR activation is crucial for 

homeostasis. MR has the same binding affinity for aldosterone, cortisol, and corticosterone. 

Glucocorticoids activate MR in most tissues at basal levels and GR at stress levels. Inactivation of 

cortisol and corticosterone by 11β-HSD2 allows aldosterone to activate MR within aldosterone 

target cells and limits activation of the GR. Under most conditions, 11β-HSD1 acts as a reductase 

and activates cortisol/corticosterone, amplifying circulating levels. 11β-HSD1 and MR antagonists 

mitigate inappropriate activation of MR under conditions of oxidative stress that contributes to the 

pathophysiology of the cardiometabolic syndrome; however, MR antagonists decrease normal 

MR/GR functional interactions, a particular concern for neurons mediating cognition, memory, 

and affect.

Introduction

The mineralocorticoid receptor (MR) and glucocorticoid receptor (GR) are highly 

homologous members of the Steroid Receptor Family of ligand activated transcription 

factors that initiate or suppress the transcription of effector proteins, as well as initiate rapid 

non-genomic, or extra-nuclear, events through several cell signaling pathways. As 

transcription factors, MR and GR compete for the same ligands, form homodimers and 

heterodimers with each other, bind many of the same hormone response elements on the 

DNA, and share many co-regulatory proteins required for the efficient initiation of gene 

transcription. Yet clearly there are separate mineralocorticoid and glucocorticoid effects and 

their primary ligands, aldosterone and cortisol (corticosterone in some species including the 

rat and mouse), serve diverse purposes and are regulated very differently. Rapid non-

genomic effects of membrane-associated MR and GR also may alter gene transcription 
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indirectly as the culmination of cell signaling pathways (107, 206). Thus the MR and GR do 

not fit the simple lock and key concept for receptor and ligand (nor do the other steroid 

hormone receptors). Aldosterone and cortisol/corticosterone also mediate rapid effects 

independent of either the MR or GR that are only recently being clarified, probably through 

G-coupled proteins (190,191,474,476). Figure 1 simplifies the actions of the MR and 

aldosterone. GR actions are slightly simpler to study because the only relevant endogenous 

ligands are the glucocorticoids, however GR do bind and are activated by pharmacological 

levels aldosterone and deoxycorticosterone, which has introduced confusion in the literature.

Bruce McEwen, a pioneer in the area of adrenal steroid receptors and their function, 

demonstrated that tritiated corticosterone rapidly crossed the blood brain barrier and was 

retained in higher concentrations and for longer in the hippocampus and septal areas of the 

brain than in the blood of adrenalectomized rats (292). Separate mineralocorticoid and 

glucocorticoid binding sites for corticosterone in the hippocampus were confirmed by 

competition and density gradient centrifugation studies (76) and the high affinity site was 

shown to have the same intrinsic binding affinities for corticocosterone and aldosterone in 

the kidney and hippocampus (252), laying the foundation for studies of pre-receptor 

mechanisms providing extrinsic ligand specificity to the MR.

The concept that the ratio of MR:GR function is crucial for normal adaptation to the ever-

changing environment was developed from studies of the physiological and behavioral 

adaptation to stress (88, 92, 95 2005, 209, 372) and is important for understanding other 

processes in which MR and GR participate, including those in the kidney and colon, 

quintessential mineralocorticoid target organs (2, 129, 130).

MRs and GRs are expressed in many cell types, often in the same cell, where they interact at 

both the molecular and functional levels to mediate and modulate diverse functions. 

Prominent MR functions include modulation of ion and fluid transport crucial for osmotic 

and hemodynamic homeostasis, as well as membrane excitability in neurons and muscle 

cells, trophic and adaptive responses to injury, and neuronal responses critical for learning, 

memory, and early response to stress. GR are essential for energy homeostasis, including 

gluconeogenesis, and the response to stress and inflammation. In the latter role, GR often 

dampen MR functions. Inappropriate activation of MR in the heart, vessels, kidneys, and 

brain hemodynamic control centers results in increased reactive oxygen species, 

inflammation and cardiovascular and renal disease (175). Use of MR antagonists has 

increased considerably in the last decade since clinical studies demonstrated their significant 

benefit as additions to standard therapy for chronic heart failure despite normal to low 

plasma aldosterone (aldo) levels in these patients (175, 386, 499). Addition of MR 

antagonists to hypertension treatment reduces diuretic-induced sympathetic nervous system 

activation resulting in insulin resistance (366), as well as the insulin resistance of the 

metabolic syndrome (440, 478).

The effects of MR antagonists on cognitive functions have been contradictory and appear to 

depend upon the health of the individual and the ratio of MR:GR function. MR antagonists 

increase cognition in heart failure patients, sometimes despite lack of significant effect on 

cardiac function (32, 84, 488). In contrast, short term use of MR antagonists in healthy 
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normotensive human subjects has adverse effects on attention, memory, and cognition, 

results that parallel those in animal models (80, 342, 492, 511). Decreases in MR or the ratio 

of MR:GR expression in other brain areas are implicated in depression and cognitive decline 

in humans (89, 100, 359) and intact MR function is crucial to the ability to learn under stress 

and the ability to form memories (401-403). Studies in humans with adrenal failure in which 

glucocorticoids are replaced at graded levels such that only MR or MR and GR are 

occupied, concur with those in adrenalectomized animals demonstrating that balanced 

activation of MR and GR provides optimal cognitive performance (448). In the long term, 

appropriate activation of the MR is essential for normal neuronal differentiation, migration, 

and function, an important consideration for the adult human, as well as the developing 

brain (47, 146, 315, 460).

This article summarizes mechanisms of MR actions in diverse tissues and their importance 

to hemodynamic homeostasis, thus basis for pathology when deranged. These are 

inextricably joined to glucocorticoid receptor activities and the activity of enzymes 

responsible for prereceptor modulation of ligands, as well as levels of aldosterone, cortisol, 

and corticosterone.

Mammalian Adrenocorticosteroids and Their Receptors

The main steroids of the adrenal cortex are the mineralocorticoid aldosterone, the 

glucocorticoids cortisol and corticosterone, and the adrenal androgens androstenedione, 11β-

hydroxyandrostenedione, and dehydroepiandrosterone sulfate, synthesized in the zonas 

glomerulosa, fasciculata, and reticularis, respectively. Cortisol synthesis requires the action 

of 17α-hydroxylase on pregnenolone within the adrenal zona fasciculata; androgens also 

require the presence of the 17α-hydroxylase and its associated activity 17-lyase to split the 

side chain for the generation of C19 steroids. Corticosterone is the primary glucocorticoid in 

species, including the rat and mouse, in which 17α-hydroxylase is not expressed in the zona 

fasciculata. Reflecting their class names, mineralocorticoids mediate electrolyte and fluid 

homeostasis and glucocorticoids control immediate energy requirements and dampen 

inflammatory responses as part of the stress response, as well as the longer term regulation 

of bone, carbohydrate, and lipid metabolism. Synthesis of adrenal androgens is generally 

low; however, it is important for females and significantly increased by ACTH (369, 371, 

486).

Adrenal steroids act through the MRs, GRs, and androgen receptors (ARs) which are 

members of the steroid hormone receptor family, along with the estrogen and progesterone 

receptors (ERs and PRs), within the superfamily of ligand-regulated transcription factors 

that comprises, in addition to steroid and thyroid hormone receptors, the retinoic acid, 

vitamin-D, peroxisome proliferator-activated, and retinoid-X receptors. Based on the 

phylogeny of their structures and those of their ligands and enzymes required for ligand 

synthesis and metabolism, several schemas for the evolution of the steroid hormone 

receptors have been proposed, with ER being the oldest. Whether MR or GR and PR are 

closer to the primordial receptor is a matter of continuing discussion (3, 21, 45, 224, 243). In 

one schema, the MR, which differs the most from the other adrenal steroid receptors, is 
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closest to the ancestral receptor, while GR and PR share a common more immediate 

ancestor (224, 243).

Dehydroepiandrosterone and its metabolites are thought to have been the ligands for the 

ancestral ER. Evolution of the 17β-hydroxysteroid dehydrogenases providing for the 

synthesis of estrogens and androgens occurred at about the same time as the ligand binding 

domain (LBD) of the AR evolved to accommodate C19 rather than C21 steroids (21). The 

requirement for a separate system to regulate energy and electrolyte homeostasis occurred 

relatively recently. The consensus is that 11-deoxycorticosterone (DOC), corticosterone, and 

cortisol were the ligands for MR before the CYP11B2 enzyme required to make aldosterone 

from DOC evolved from a gene duplication of the DNA of the primordial CYP11B1, the 

last enzyme in corticosterone and cortisol synthesis, following the divergence of the two 

receptors (3,21,45,54,134,224,243,345). Some mammals, do not have a separate CYP11B2 

gene, among these are cattle from whence aldosterone was first isolated (198). Nonetheless, 

only aldosterone is synthesized from DOC in the zona glomerulosa of these adrenals, as 

17β-hydroxysteroid dehydrogenase (HSD) is not expressed in the zona glomerulosa (330, 

335, 339).

Glucocorticoid synthesis is under the control of the hypothalamic-pituitary-adrenal axis and 

has a distinct circadian rhythm with peak production just before awakening. Hypothalamic 

corticotropin releasing hormone (CRH) neurons release CRH in response to 

vasopressinergic stimulation from the suprachiasmic “clock” neurons (22, 432), as well as to 

stimulation from other brain centers perceiving stress, including hypoglycemia (422). 

Activation of MR and GR on CRH neurons by cortisol or corticosterone provide feedback 

control (204). Both MR and GR are important for the long-term adaptation of the 

hippocampus to stress and its modulation of the HPA (89). Studies using selective 

antagonists demonstrate that MR, not GR, are crucial for the habituation response to 

repeated stress on the release of corticosterone through negative feedback on the release of 

CRH from hypothalamic CRH neurons (77, 154). Signals from the hippocampus also 

modulate CRH neuron activity. Among many functions, CRH stimulates the release of 

adrenocortical trophic hormone (ACTH) from pituitary corticotrophs (204). ACTH acutely 

stimulates the mobilization of cholesterol into the mitochondria of adrenocortical cells by 

steroidogenic acute regulatory protein where the first step in steroidogenesis, side chain 

cleavage by Cytochrome P450scc, occurs. ACTH increases aldosterone and adrenal 

androgen synthesis, as well as glucocorticoid synthesis. ACTH also increases the expression 

of Cytochrome P450scc and in particular CYP11B1, 11β-hydroxylase, the last step in the 

synthesis of cortisol and corticosterone within the zona fasciculata.

Aldosterone synthesis is regulated primarily at the level of CYP11B2, aldosterone synthase, 

the last and unique enzyme for aldosterone synthesis, which is increased by Angiotensin II 

(AII) through its type 1 receptor (AT1R) and low sodium and suppressed by low potassium 

(175, 215, 216, 382). DOC is the substrate for CYP11B2 as well as CYP11B1 in those 

species without adrenal 17β-hydroxysteroid dehydrogenase including the rat and mouse.

Progesterone is a competitive MR antagonist with a similar affinity for the MR as 

aldosterone. It circulates in low concentrations in comparison to aldosterone, cortisol, and 
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corticosterone in males and nonpregnant females and is inactivated by several enzymes in 

aldosterone target epithelia of the kidney (363). Progesterone levels reach significant levels 

in pregnancy and the luteal phase of the estrus cycle in species with a distinct luteal and 

follicular phase, including women. Inhibition of the MR by progesterone in aldosterone 

target cells activates the RAAS during the second half of the estrus cycle, resulting in the 

doubling of aldosterone levels in women during the luteal phase (41, 75, 183). Over 45 years 

ago, it was suggested that premenopausal women be screened for aldosterone producing 

adenomas only during the follicular phase of the cycle to avoid spurious diagnoses of 

hyperaldosteronism during the luteal phase (183), a suggestion that was reiterated recently 

along with a call for new reference ranges for the Aldosterone:Renin ratio used to screen 

patients for Primary Aldosteronism (PA) in premenopausal women (8). During normal 

pregnancy, there is a progressive and tightly controlled increase in aldosterone along with 

progesterone, essential to maintain fluid and electrolyte homeostasis during the volume 

expansion required for normal placental growth and function (152,153). While elevated 

aldosterone levels and inappropriate activation of the MR are associated with hypertension 

and cardiovascular disease, healthy premenopausal women, have a lower risk for these 

diseases, despite higher aldosterone levels, demonstrating the complexity of steroid 

interactions (41).

The number of cells within the zona fasciculata greatly exceeds that of the zona glomerulosa 

which comprises a narrow rim of only a few cells deep under the outer capsule of the 

adrenal. Thus, the mass of cortisol or corticosterone synthesized vastly exceeds that of 

aldosterone. To further regulate ligand availability, individual target cells evolved the ability 

to inactivate or reactivate cortisol and corticosterone before it reached the MR or GR.

Prereceptor regulation of steroid ligands is an essential mechanism for regulating receptor 

activation and ligand specificity. HSDs evolved concomitantly with the receptors and 

ligands and regulate the availability of steroid ligands (inactivating or activating) within the 

target cell and provide cell type-specific “prereceptor regulation” of ligand binding (352). 

The steroid dehydrogenases 17β-HSD and 11β-HSD inactivate or activate C17β steroids, 

estrogens and androgens, and C11β steroids, cortisol and corticosterone, respectively. 11β-

HSD2 also converts 11β-hydroxy-testosterone to 11-keto-testosterone, the active androgen 

in fish. As MR and GR took on separate functions, inactivation of glucocorticoids by 11β-

HSD2 in aldosterone target cells provided extrinsic selectivity of the MR for aldosterone in 

tissues involved in fluid and electrolyte homeostasis or transport, including the renal tubular, 

colon and salivary gland epithelium, subcommissural organ, and a small number of aldo 

sensitive neurons of the nucleus tractus solitarius (NTS) (21,147,164). Placental 11β-HSD2 

is also crucial for the maintenance of optimal glucocorticoid levels in the fetus despite 

elevated levels required for the high energy requirements of the dam (69, 81, 484). 

Discovery of this prereceptor regulation mechanism partially solved a vexing problem of 

ligand specificity for the MR in different tissues.

Cloning of the MR gene confirmed that there is only one MR that has similar affinity for 

cortisol, corticosterone, progesterone, DOC, and aldosterone in vitro, but nonetheless 

exhibits different ligand “preference” depending on the tissues: aldosterone in the kidney 

and colon epithelia, and cortisol and corticosterone in most of the brain. In older literature 
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the MR has been called the Type 1 corticosteroid receptor due to its higher affinity, as 

opposed to the lower affinity Type 2 corticosteroid receptor, the GR (17, 94, 133, 373). The 

affinity of the GR for cortisol and corticosterone is approximately one tenth that of the MR 

for these glucocorticoids; the affinity of GR for aldosterone is about one tenth that of 

cortisol and corticosterone. In mammals, the glucocorticoids cortisol and corticosterone 

circulate at 100-fold (free) to 1000-fold (total) the concentration of aldosterone, so even 

though binding to corticosteroid binding globulin (CBG; transcortin) and albumin reduces 

free glucocorticoids by about 80% to 90%, that which remains still is far greater than plasma 

levels of aldosterone. Consequently, under physiological conditions most MR, including 

those of the myocardium and brain, are occupied by nonstress levels of glucocorticoids (17, 

89, 114, 132). GR are thought to be occupied by cortisol or corticosterone primarily at the 

zenith of the circadian cycle and during stress. CBG does not simply limit free steroids in 

the plasma; it protects glucocorticoid from degradation and maintains a dynamic equilibrium 

of free and bound plasma glucocorticoid levels for tissue needs (101, 287). CBG-null 

transgenic mice have a significantly dampened corticosterone surge and display altered 

behavior in response to stress partially remediated by intrahippocampal infusion of 

corticosterone (308). DOC is also bound to CBG, however under normal circumstances, due 

to its lower total concentrations, relatively little free DOC is available receptor binding in 

comparison to cortisol, corticosterone or aldosterone (252).

11β-hydroxysteroid dehydrogenases: prereceptor regulators of MR and GR ligands, Figure 

2. The syndrome of apparent mineralocorticoid excess (AME) provided a clinical model to 

discover the role of 11β-HSD2 in aldosterone selectivity for MR (110, 139). AME is 

characterized by hypertension and frank or easily provoked hypokalemia and alkalosis, as 

expected for PA, except that, while plasma cortisol levels are normal, renin, and aldosterone 

are very low. Measurement of urinary cortisol metabolites demonstrated a decrease in total 

cortisol production and impaired conversion to cortisone (110,311,428,429,450,480). It is 

now known that inactivating mutations of the 11β-HSD2 gene and pharmacological 

inhibition of the enzyme by the excessive ingestion of licorice and its synthetic analog 

carbenoxolone allow cortisol or corticosterone to activate MR in aldosterone target cells, 

producing AME (34, 110, 139, 428, 464, 479). High levels of cortisol in ectopic ACTH 

syndrome are presumed to saturate the 11β-HSD2 in aldosterone target cells, allowing 

cortisol to activate MR and produce an AME-like syndrome (451). While the consequences 

of activation of the MR by aldosterone or glucocorticoids are the same for some functions 

(138, 450), they are different for others (93, 94, 180, 338, 373, 452, 453, 482). Recognition 

of these differences and their underlying mechanisms will allow more specific targeting with 

therapeutic agents.

Discovery of the mechanisms of prereceptor regulation of cortisol and cortisone may have 

been delayed by discrepant data from whole cell and in vivo studies compared to enzyme 

kinetic studies done with tissue homogenates in which cells and organelles were broken, 

mixing enzymes, cofactors, and substrates that normally are in separate subcellular 

compartments (169, 170). We now know that there are two, perhaps more, 11β-

hydroxysteroid dehydrogenases, 11β-HSD1, and 11β-HSD2 (164, 168, 173, 251, 310). 11β-
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HSD1 and 11β-HSD2 are products of distinct genes that are located primarily in 

endoplasmic reticulum (ER) where they are associated with the inner membranes (323, 334).

11β-HSD1 is a reversible dehydrogenase that in most tissues is responsible for the oxido-

reduction of inactive cortisone and 11-dehydrocorticosterone, converting them to cortisol 

and corticosterone, thus increasing the intracellular availability of activating ligand to both 

the GR and MR (409). In homogenized cells 11β-HSD1 functions as a dehydrogenase. The 

obligate cofactor for 11β-HSD1 reductase activity is NADPH. NADPH does not readily 

cross the ER membrane, thus NADPH formed outside by glucose-6-phosphate 

dehydrogenase cannot reach the 11β-HSD1. Without the microsomal hexose-6-phosphate 

dehydrogenase (H6PDH), to reduce NADP+ and generate NADPH, 11β-HSD1 is a 

dehydrogenase (19, 52). For example, 11β-HSD1 functions primarily as a dehydrogenase in 

preadipocytes, as these do not express H6PD. Upon differentiation and expression of H6PD, 

11β-HSD1 becomes a reductase (53). The expression of 11β-HSD1, but not H6PD, in 

preautonomic nerves of the PVN suggests that MR in these neurons may normally be 

regulated by endogenous aldosterone (71).

11β-HSD2 is a unidirectional NAD+-dependent dehydrogenase of the ER that converts 

cortisol and corticosterone to the inactive cortisone and 11-dehydrocorticosterone (173, 323, 

418, 512). It is coexpressed with the MR in aldosterone target cells where a majority of MR 

may be tethered to the enzyme within the ER in the absence of aldosterone (322,323,334). 

Quantification of 11β-HSD2 protein does not always predict function. Under nondenaturing 

conditions a significant proportion of the 11β-HSD2 exists as an inactive dimer. Addition of 

reducing agents β-mercaptoethanol or dithioerythritol allows the detection of the expected 

~40 kDa band in Western blot analysis and significantly increases NAD+-dependent 

conversion of 3H-corticosterone by kidney microsomal protein with a K(m) of ~15 nmol/L, 

similar to that of the cloned and expressed enzyme (169). Prereceptor regulation of the 

relative concentrations of aldosterone and glucocorticoids by 11β-HSD2 may have its own 

braking system, as the product cortisone was found to directly inhibit aldosterone-induced 

MR activation in an in vitro system (334). Estrogens significantly increased the expression 

of 11β-HSD2 message and protein, primarily as dimers, in the rat kidney, while decreasing 

that of 11β-HSD1. However, the increase was not associated with an increase in in vivo 

conversion of corticosterone to 11-dehydrocorticosterone as measured by urine metabolites. 

In vitro activity was also unaffected by the increase unless the 11β-HSD2 dimers were 

reduced to monomers, suggesting that enzyme dimerization rapidly regulates 11beta-HSD2, 

thus MR, activity (170). The functional significance of this increase in 11beta-HSD2 upon 

conversion of 11β-hydroxy-testosterone to active 11-ketotestosterone in the kidney has not 

been reported, but it does appear to have a function in the ovary (301).

Expression of 11β-HSD2 protein is limited in most parts of the adult brain (147, 171, 307, 

405) where most MR are occupied by glucocorticoids. A noted exception are a few neurons 

of the NTS which expresses both MR and 11β-HSD2. These neurons are activated by a low 

sodium intake associated with high aldo levels and mediate an increase in sodium appetite 

(147, 148). The sympathetic nervous system is overactive in PA (216, 248); however, 

despite experimental evidence that aldosterone acts within the paraventricular nucleus of the 

hypothalamus (PVN) and amygdala to mediate hemodynamic and renal effects through 
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modulation of the sympathetic nervous system and salt appetite (28, 49, 118, 175, 367, 368, 

389, 487), abundant MR, but no 11β-HSD2 has been detected in these areas (147). 

Notwithstanding, the efficiency with which tritiated corticosterone is converted to 11-

dehydrocorticosterone by minces of rat brain tissue suggests dehydrogenase activity by 11β-

HSD1, which is highly expressed in the brain. The existence of another 11β-HSD has been 

postulated from kinetic studies (158, 160, 168, 173, 418), including a unidirectional 

NADP+-dependent cortisol dehydrogenase that appears to be specifically expressed in the 

brain (336). H6PD message and protein were found in general areas of the brain along with 

11β-HSD1 (178); however, these studies did not address individual cells. MR, but not GR, 

are expressed in preautonomic neurons in the PVN identified by a retrograde tracer injected 

in the intermediolateral cell column of the spinal cord. 11β-HSD2 was not detected in the 

PVN, confirming several earlier reports. 11β-HSD1, but not H6PD, was coexpressed with 

MR in tracer-identified neurons, suggesting that aldosterone selectivity of MR in these 

neurons may be conferred by dehydrogenase activity of 11β-HSD1 (71).

Because 11β-HSD1 participates in normal physiology as a reductase and an amplifier of 

glucocorticoid action in specific cells by regeneration of active steroid from circulating 

cortisone and 11-dehydrocorticosterone, it has recently become a target for the development 

of specific treatments of the metabolic syndrome, type II diabetes, obesity, and the dementia 

associated with aging in which excessive cortisol action has a role (15, 20, 105, 221, 321, 

408, 441, 465). 11β-HSD1 also participates in the metabolism of 7-ketocholesterol, which 

has potential implication in the development of atherosclerosis and dyslipidemia (404). In 

addition, an 11β-HSD1 polymorphism has also been identified as a risk factor for depression 

(96).

While generally either 11β-HSD1 or 11β-HSD2 are found in a cell, both enzymes may be 

expressed in the same cell (106, 438). In the case of the granulosa cell, the predominance of 

one 11β-HSD over depends on the gonadotropin concentrations (437). In summary, the 

regulation of intracellular glucocorticoid concentrations by 11β-HSD1 and 11β-HSD2 is 

crucial for the regulation of both MR and GR activation in a variety of tissues and attention 

to the availability of cofactors must be considered when analyzing their activities (71, 127, 

221, 304, 312, 425, 427, 439).

Prereceptor inactivation of DOC and progesterone also provides aldosterone selectivity to 

the MR (55, 363, 411). DOC is a potent mineralocorticoid in vitro that has similar affinity 

for the MR as aldosterone (18, 411). In the adrenal zona glomerulosa 21-hydroxylation of 

progesterone yields DOC which is then converted to aldosterone by aldosterone synthase 

under the control of the Renin-angiotensin-aldosterone system. DOC is also synthesized by 

21-hydroxylation of circulating progesterone in many tissues (160, 381, 436, 500) 

independently of the RAAS. DOC circulates in concentrations approximating those of 

aldosterone, particularly during pregnancy, though most of it is bound to CBG (252). 17β-

Hydroxysteroid dehydrogenase type 5 (17β-HSD5), also called AKR1C3 in the human, is a 

member of the aldo-keto reductase family and has multiple functions (411). In addition to 

converting androstenedione to testosterone in androgen target cells, it is a 20α-

hydroxysteroid dehydrogenase that converts DOC to the inactive 20α-hydroxy-DOC, thus 

providing prereceptor ligand regulation for the MR in aldosterone target cells of renal 
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tubular and colon epithelial cells (411). Progesterone also has high affinity for the MR and 

circulates in relevant concentrations to compete with aldosterone in pregnancy and the luteal 

phase (364). There are several enzymes in kidney tubular epithelial cells including 17β-

HSD5 that render progesterone inactive at the MR (363).

Extra-adrenal steroid synthesis as prereceptor ligand modulation has been proposed for GR 

and MR as a way to augment local steroid concentrations that would act in an autocrine or 

paracrine fashion. Several labs have documented the existence of all of the enzymes 

required for adrenal steroid synthesis from cholesterol within the brain of rats and humans 

(86, 160, 161, 166, 174, 274, 275, 300, 500); however, the relevance of the very small 

amounts synthesized to normal physiology has not been clearly demonstrated. Several 

tissues have local RAS that may regulate extra-adrenal aldosterone synthesis (276) and 

mRNA for CYP11B2 in the hippocampus and cerebellum, but not hypothalamus and brain 

stem were found to be increased by a chronic low salt diet (493). The relevance of this 

finding if it is confirmed is uncertain, as there is no evidence that MR in these areas of the 

brain are normally activated by aldosterone. However, as will be discussed below, 

aldosterone appears to act through GPER, formerly called GPR30, which does not bind 

cortisol or corticosterone at physiological concentrations (119,124,188,190) and which is 

expressed in the brain.

It has been shown that inhibitors of the late pathways of corticosterone and aldosterone 

synthesis in the brain inhibit the hypertension of the sodium challenged Dahl Salt-Sensitive 

rat, suggesting the participation of relevant amounts their synthesis in the CNS for autocrine 

or paracrine function in this model (177, 179, 227).

Extra-adrenal synthesis of cortisol, corticosterone or aldosterone in the heart, particularly the 

failing heart, has been an area of great controversy (97, 165, 415, 416, 435, 446, 473, 496), 

however the consensus at this time is that aldosterone synthesis in the heart does not occur 

in relevant amounts (6, 86, 165, 446, 447). Reports of extra-adrenal synthesis of aldosterone 

in other organs await replication (48).

Steroid hormone receptors share common structural domains that reflect function: an 

amino-, or N-terminal region (NTD), DNA binding domain (DBD), hinge, and the LBD at 

the carboxy-terminus (18, 113, 279, 344, 461). The structures of the MR and GR are more 

similar to each other than to other steroid hormone receptors, with homologies of about 57% 

in the LBD, 94% in the DBD, and 15% in the NTD (345, 461).

The homology between the LBDs results in similar affinity of the MR for cortisol, 

corticosterone, and aldosterone which is 10-fold that of GR for cortisol and corticosterone. 

The importance of physiological concentrations and proportions of ligands when studying 

MR and GR mediated functions cannot be overemphasized. Similarities in the LBDs of GR 

and MR also means that aldosterone at high pharmacological concentrations activate GR. 

This does not occur in vivo because aldo production is so low in comparison to that of 

cortisol, even in PA. However, GR activation by high levels of mineralocorticoids may 

become an artifact of experimental design leading to misinterpretation. Similarly, 

pharmacological doses of glucocorticoids overwhelm protection by 11β-HSD2 and activate 
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aldosterone-target MR and nonphysiologically high levels of mineralocorticoids can activate 

MR that do not express 11β-HSD2 and are normally occupied by glucocorticoids.

Use of deoxycorticosterone (DOC) or its acetate (DOCA) to study mineralocorticoid 

action presents another important concern for interpretation (462). DOC was discovered and 

synthesized several years before the more potent mineralocorticoid aldosterone was isolated 

and synthesized (424). Because of its significantly lower cost, DOCA, is often used as a 

mineralocorticoid and mistakenly equated to aldosterone. However DOCA is inactive; its 

conversion to DOC by as yet unidentified esterases occurs with variable efficiently and is 

slow in some organs, particularly in skeletal muscle (462). DOC is inactivated in the renal 

tubule and colon epithelia by 20-ketosteroid reductase, an isozyme of the human AKR1C3 

gene (411). Therefore, though DOC has an in vitro affinity for the MR similar to aldo, 

cortisol, and corticosterone, the activity of DOC in vivo in these transport epithelia is 

approximately 2% that of aldo. DOC and DOCA have a renal mineralocorticoid effect when 

used at high enough doses to saturate the AKR1C3 isozyme, however, these high 

concentrations of DOC are far beyond its physiological range, so in other organs, most of 

which do not express AKR1C3, commonly used DOC and DOCA doses may have 

antagonistic effects on GR, in addition to activating the MR (462). In an early clinical study, 

it was found that DOCA treatment exacerbated symptoms of rheumatoid arthritis and that 

these signs improved with the concomitant administration of cortisone (112). With our 

present knowledge of the importance of MR:GR interactions, it is important to reinterpret 

the literature that assumed that DOC and DOCA act as pure mineralocorticoids, especially 

in the area of nonepithelial tissue hypertrophy and fibrosis, where they may have also been 

inhibiting GR (462).

Steroid hormone receptors are ligand activated nuclear transcription factors, Figure 3. While 

some members of the steroid receptor family are found primarily in the nucleus, in the 

absence of ligand most MR, GR, and AR are located primarily in the cytoplasm and are 

shuttled to the nucleus when activated by a ligand and back to the cytoplasm when unbound 

and transcriptionally inactive (184, 197). In the cytosol, the receptors are bound to receptor- 

and cell-specific chaperone and scaffolding proteins that facilitate posttranslational 

modification of the receptors [phosphorylation is particularly important for MR activation 

(345)], ligand binding, and attachment to the motor mechanism that shuttles the receptors 

between the cytoplasm and nucleus (42, 142, 143, 329, 351, 353). Ligand binding to the 

LBD of the MR and GR unmasks a nuclear localization signal sequence that aids 

translocation of the receptors to the nucleus. The conformational change produced by ligand 

binding also uncovers a highly conserved activation function site, AF2, essential for the 

binding of coregulatory factors of the DNA transcription assembly. The LBD of the MR and 

GR also have similar dimerization sites exposed after nuclear translocation that allow them 

to form homo- and heterodimers with each other (345). Due to the close homology of their 

DBD, MR, and GR share hormone response elements (HREs) or glucocorticoid response 

elements (GREs).

Among the best understood chaperone proteins for the MR and GR are heat shock proteins 

90 and 70 (hsp90 and hsp70) and immunophylins (83, 142, 143, 345). Regulation of 

chaperone proteins alter ligand binding probability; however, these proteins are not specific 
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for the MR and GR; they have other functions, including as chaperones for other steroid 

hormone receptors. Measurement of MR in subcellular fractions of mouse ventricular 

cardiomyocytes in which hsp90 expression is limited and in several cultured cell models in 

which hsp90 expression was manipulated, suggest that hsp90 shields the nuclear localization 

signal sequences, keeping the unbound MR in the cytoplasm (217). In the absence of 

sufficient hsp90 expression, MR were located primarily in the nucleus where they remained 

inactive until bound by ligands, as do several other steroid hormone receptors, including the 

ER (217). Hsp90-bound MR have been reported in the nucleus, suggesting that shedding of 

the hsp90 may not be essential for nuclear localization of MR (141); however, the consensus 

is that hsp90 is lost upon MR or GR binding to a ligand.

Upon binding to an agonist and divestment of chaperone proteins, the hinge portion of the 

receptor molecule flexes, allowing the N- and carboxy termini to approximate each other 

and uncovering the nuclear localization signal 2 (NLS2) in the LBD, and NLS1 in the hinge 

region (345). The receptors are then transported into the nucleus, within 10 to 20 min for the 

MR activated by aldosterone in vitro, where they form dimers and recruit cotranscription 

factors that stabilize their binding to the promoters of specific genes at HRE (GRE) (117, 

141, 328, 345, 351, 353, 379). A nuclear export signal located between the NSL1 on the 

hinge and the DBD is important for subsequent movement of the MR out of the nucleus and 

in to the cytosol (345).

Dimer formation is determined by the conformation of the DBD and parts of the LBD 

which are defined in part by the activating ligands (125, 443, 461). The homology of their 

DBD and LBD allow GR and MR to form heterodimers in addition to homodimers before 

binding to the same HRE (329,397,423,443,445,461). Homodimers of MR and GR have 

different transcriptional efficiencies than their heterodimers depending on the HRE (reporter 

gene) in vitro (461) and are probably important regulators of MR transcriptional activity in 

vivo (2). The intermittent secretion of glucocorticoids to maintain glycemic control and 

respond to stress, superimposed upon their prominent circadian secretion, controls the 

activation of GR, thus the formation of MR:GR heterodimers. MR homodimers predominate 

at low circadian levels of glucocorticoids; heterodimer and GR homodimer formation would 

be highest during stress. This may be particularly relevant in the brain, where 

glucocorticoids are the ligand for most neurons and the relative expression of MRs and GRs 

differ between neuron types, including neurons in different areas of the hippocampus (89).

The relative amounts of MR and GR expression and that of 11β-HSD2 differ in the 

epithelial cells of each segment of the kidney nephron. Results from in vivo studies using 

physiological concentrations of ligands, suggest that MR:GR heterodimers, rather than 

MR:MR homodimers, are most efficient in initiating the transcription of genes associated 

with ion channel activation, the primary mineralocorticoid activity in this prototypical 

aldosterone target tissue (2). Similarly, MR expressed by itself in cultured neuronal and 

colon epithelial cells was found to be unable or inefficient in initiating transcription at 

several HREs including that of epithelial sodium channels (ENaC); transfection with GR 

markedly enhanced transcription (445). Conversely, in a different in vitro study using, 

Na/K-ATPaseβ1, another gene classically associated with mineralocorticoid function, as the 

reporter gene, either MR or GR could initiate transcription, but coexpression of MR and GR 
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repressed transcription. When the MR NTD, which is significantly larger than that of the 

GR, was mutated to that of the GR (98), transcription efficiency of the heterodimer was like 

that of either homodimer, suggesting that the promoter site on the ATPaseβ1 gene requires 

symmetry for dimer binding or recruitment of transcription coactivators. Clarifying the role 

of MR and GR homodimer and heterodimer transcriptional efficiency for different genes 

may lead to a strategy for targeted therapeutics (489).

Coregulatory proteins, the coactivators, and corepressors, interact at activation function 

regions, AF1 in the NTD and AF2 in the LBD, to modulate transcription efficiency of the 

receptor. Most corepressors bind a specific segment of the AF1. As GR and MR differ the 

most in their NTDs, differential recruitment of cell-specific corepressors theoretically 

provides for differentially regulated gene transcription (120, 131, 345, 423, 461). The list of 

coregulatory proteins for the MR is still growing and includes members of the large steroid 

receptor coactivator family (SRC), PBP/TRAP220, and CREB-binding protein (CBP) as 

coactivators, and NCoR and SMRT as corepressors (293, 294, 490, 495). For example, small 

ubiquitin-related modifier-1 (SUMO-1) ubiquitin9 and steroid receptor coactivator-1 

(SRC-1) form a coactivating complex with the NTD of the activated MR and enhance its 

transcriptional activity for ENaC, a prototypical MR-regulated gene in nephron aldo target 

epithelia expressing both MR and 11β-HSD2 (494). When 11β-HSD2 activity is deficient or 

absent, as in Apparent Mineralocorticoid Excess syndrome or licorice abuse, endogenous 

cortisol or corticosterone produce the same transcriptional effect on the ENaC gene (311, 

428). The distinct anatomical distribution of different splice variants of SRC-1 in neurons 

may be responsible for the opposite effect that stress levels of corticosterone have on the 

release of corticotrophin releasing hormone from neurons of the PVN and central amygdala 

through MR and GR (299).

To identify cofactors specific for the MR, those that differentiate MR from GR 

transactivation, the NTD of the human MR was used as bait in a yeast two-hybrid assay, 

resulting in the isolation and identification of ELL (11-19 lysine-rich leukemia), an RNA 

polymerase II elongation factor. Subsequent transcription assays in several cell systems 

demonstrated that ELL is a potent coactivator for human MR-mediated transcription and 

significant corepressor of GR-mediated transcription, but did not alter transcriptional 

activity of AR or PR (346). A similar type of study using a human brain cDNA library and a 

segment of the human MR AF1 sequence as bait demonstrated that DAXX and FLASH 

were coactivators for both MR and GR, while FAF-1 only coactivated MR (333). Further 

analysis of coregulator specificity should provide information about the complex and cell 

type specific actions mediated by the MR, the GR and their interactions necessary for the 

development of MR:ligand-selective peptide antagonists to target MR in specific cells under 

specific contexts, for example, in the injured or poorly perfused cardiomyocyte (489), but 

not hippocampal neurons (402).

Ligand independent transcriptional activation of the MR has been suggested. While MR and 

GR are primarily in the cytoplasm of cells in the adrenalectomized animal, a few receptors 

are found in the nuclei, and MR have been reported to be activated in under conditions of 

high oxidative stress despite no increase in circulating agonists. Ras-related C3 botulinum 

toxin substrate 1 (Rac1) is a Rho-family small GTPase expressed fairly ubiquitously. 
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Activated Rac1 has been proposed as mediator of ligand-independent MR transcriptional 

activity under high reactive oxygen stress in several tissues, including the chronically failing 

heart and kidney (128,320,413). Under normal conditions NO suppresses transcriptional MR 

activity, suggesting that NO treatment mitigates excessive and pathophysiological effects. In 

contrast, peroxynitrite formed by the reaction of NO with excessive ROS was found to 

induce ligand independent MR nuclear translocation and transactivation without activating 

GR (388). An alternative proposal is that in many nonepithelial cells the MR is bound to 

glucocorticoid in a quiescent conformation that is rendered active under conditions of severe 

oxidative stress such as that of heart failure, resulting in inappropriate MR activation (135).

The regulation of MR and GR expression is crucial for their function. Two promoter sites 

on the MR gene have been identified, P1 and P2. The transcription factors initiating MR 

gene transcription through these promoter sites may be cell-type specific. In one highly 

synthetic system, MR gene transcription was activated by GR homodimers at both sites, MR 

homodimers initiated transcription only at P2, and together, MR and GR induced 

transcription of the MR gene more efficiently, however mutational analysis found that this 

synergy did not occur at the MR gene HRE; the mechanism of transcriptional activation has 

not been reported (505). In other cell types expressing GR and MR, cortisol and 

corticosterone, but not the synthetic glucocorticoid dexamethasone, efficiently promote 

transcription of the MR gene through P1 and P2, while aldosterone increased transcription 

primarily through the less efficient P2 promoter (461). In contrast, MR gene expression in 

murine embryonic stem cells (ESCs) was initiated by aldosterone activation of MR at both 

the P1 and P2 promoter sites on the MR HRE during and after their differentiation into 

neurons (315). The nuclear transcription factors Spl and AP-2 bind to both the P1and P2 

promoters providing addition transcriptional regulation of the MR (344, 505).

Discrepant reports about the effects of adrenalectomy and steroid treatment on MR and GR 

mRNA may well be due to differences in the part of the brain studied and the use of very 

large amounts of corticosterone or aldosterone that may activate both MR or GR. (5, 204). 

More physiological levels of replacement in the adrenalectomized rat had different effects 

on MR and GR expression and activation in tubular epithelial cells of different segments of 

the nephron (2). Levels of MR mRNA and protein were found to be increased in the PVN of 

rats on a chronically low, compared to high, sodium intake. Predictably, plasma aldosterone 

concentration were significantly greater in the rats on a low salt diet, while corticosterone 

was similar in both groups (71). This suggests that MR transcription in the PVN may be 

modulated by aldosterone as reported from in vitro studies (315, 461). Progesterone is 

generally an MR antagonist; however, it has been shown to increase neuronal MR promoter 

activity and increase MR mRNA in vitro and in rats whose ovaries and adrenals were 

removed (67). The MR promoter region also has a potential estrogen response element 

(266), which is interesting in the context of the mammary ductal epithelial cell that 

expresses both MR and 11β-HSD2 (396) and the finding that 11β-HSD2 expression is 

increased by estrogen (170).

The G protein-coupled receptor 48 (GPR48) deletion mouse develops 

peudohypoaldosteronism, with high aldosterone levels but renal salt wasting due to deficient 

of MR expression. This model revealed the importance of GPR48 in stimulating MR 
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expression through the cAMP/protein kinase A pathway and a noncanonical cAMP-

responsive element located in the MR promoter (468).

Splice variants of the MR mRNA found in the rat and human are of uncertain 

physiological significance (256, 504, 510). In situ hybridization studies of the developing rat 

hippocampus demonstrated significant differences in the proportions of three MR spice 

variants comprising the same coding regions in different parts of the hippocampus that 

correlated with stages in neuronal development (460). The expression of these MR variants 

in the different areas of the hippocampus was disrupted by adrenalectomy. The authors 

proposed that the different MR transcripts contributed to the regulation of the complex 

processes of neurogenesis, migration, and maturation in the developing hippocampus (460). 

The MR and GR genes both have two strong Kozac consensus sites, however, to date studies 

demonstrating a significant difference in transcriptional efficiency between the two MR 

transcripts have been limited to highly artificial systems and have as yet not proven to be 

physiologically important (345). Gain or loss of function mutations of MR and GR genes 

resulting in severe disease (74, 151, 332) and polymorphisms with more subtle implications 

have been described in the human (40, 99, 421, 454, 456), some of which are known to alter 

the risk for hypertension and/or depression which will be described more fully below.

Epigenetic events allow for the silencing of gene expression necessary for cell 

differentiation by altering the degree of DNA methylation, covalent modification of histones 

adjacent to a given gene thereby controlling access of transcription factors, and noncoding 

RNAs, including microRNAs that modulate protein coding RNA (230). While most 

epigenetic events occur during cell differentiation, they also provide a mechanism for long-

term and relatively stable adaptation to the environment. Methylation of cytosines adjacent 

to guanines (CpG sites) in gene promoter regions generally decreases transcription and tends 

to be more resistant to reversal than histone modification by acetylation, methylation, and 

phosphorylation.

Methyl-CpG-binding protein 2 (MECP2) is an example of a mechanism for transcriptional 

repression. MECP2 binds to symmetrically positioned methylated CpG sites in the promoter 

regions of genes subject to transcriptional silencing after DNA methylation, including the 

GR and MR genes. Upon binding to the chromatin, MeCP2 interacts with histone 

deacetylase and the transcriptional corepressor SIN3A, resulting in deacetylation of core 

histones, causing them to adhere more closely to the DNA, preventing access to 

transcription factors (13). Loss of function MeCP2 mutations have been documented in most 

Rett syndrome patients and transgenic mice bearing these mutations recapitulate many 

aspects of this progressive and devastating developmental disorder, including anxiety, loss 

of sleep/activity cycle, and motor and cognitive deficits, demonstrating the importance of 

normal repression of gene transcription during the development (87). Treatment of these 

mice with corticosterone during their first week of postnatal life is reported to produce 

paradoxical changes in MR and GR expression in the hippocampus and partial 

normalization their behavior after weaning (87).

An example of a factor that enhances transcription through epigenetic changes is nerve 

growth factor-inducible factor A (NGFI-A), a member of a family of immediate-early gene-
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encoded transcription activators that is highly expressed in the hippocampus. NGFI-A binds 

specific structures in the promoter regions of target genes to promote histone acetylation and 

chromatin demethylation by DNA demethylases (472). The GR gene is among those 

targeted by NGFI-A.

As might be predicted, DNA methylation of exon 1 of the gene for 11β-HSD2 is least in 

aldosterone target tissues, where its expression is highest (9). Activation of the MR in the 

renal tubule by aldosterone increases the transcription of several genes including Sgk1 and 

ENaCα. Murine histone H3 lysine-79 methyltransferase (mDot1a) forms a repressor 

complex with Af9 which hypermethylates the ENaCα gene, thus represses its transcription. 

Sgk1 phosphorylates Af9, inactivating the repressor complex, thus allowing the ENaCα 

promoter to become hypomethylated, thus more accessible for transcription (507, 508). 

Polymorphisms in the human Sgk1 gene has been associated with blood pressure in two 

different cohorts of men (57). Epigenetic changes altering the expression of enzymes 

required for the synthesis and catabolism of adrenal steroids are important determinants of 

cell-type specific function (232).

The epigenetic effects of stress and glucocorticoids on the limbic system and HPA were 

recognized long before the molecular bases for these changes were known (230). Ontogeny 

of the MR and GR continues after birth in mammals, reaching adult levels in rats at about 1 

and 3 weeks of age, respectively (393). The number of GR but not MR are significantly 

influenced by the early environment (296, 297, 393), a phenomenon now known to be a 

crucial epigenetic event influencing the ability to cope with psychological stress, as well as 

energy metabolism and cardiovascular health as an adult (68). Pioneering work by Meaney 

on the long-term effects of different levels of maternal attention to their pups on their 

behavior as adults. Adult rats raised by more interactive dams with high licking and 

grooming behavior, compared to those who had been adequately fed and groomed by less 

interactive dams, have greater hippocampal GR expression, dampened hypothalamic-

pituitaryadrenal (HPA) activation and less fear behaviors in response to acute stress (296, 

297, 407, 472, 506). These effects on the adult progeny were reversed by cross-fostering. 

This relatively mild and benign increased stimulation during the first week of postnatal life 

increased hippocampal serotonin (5-hydroxytryptamine, 5-HT) turnover and NGFI-A 

expression. Increased NGFI-A was associated with increased demethylation of hippocampal 

GR, thus greater GR expression in the progeny of the high licking/grooming dams persisting 

into adulthood (390, 434, 471). The degree of GR gene methylation at the NGFI-A binding 

site was similarly correlated with HPA activity and cortisol levels in women (109).

More severe and/or chronic stress, iatrogenic glucocorticoid excess, or inhibition of the 11β-

HSD2 during gestation and early life result in a hyperreactive HPA, and deleterious effects 

on energy metabolism, cardiovascular function, cognition, and greater anxiety behavior in 

the adult in experimental animals and humans (208, 317, 337, 406, 422). Effects of 

glucocorticoids on phenotype programming can persist over generations and be transmitted 

by the sire as well as the dam in experimental animals (104). Part of the mechanism for 

these effects is a decrease in the methylation of MeCP2 binding sites on the arginine 

vasopressin gene, resulting in increased aVP expression and stimulation of ACTH release, 
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thus increased glucocorticoid synthesis by the adrenal upon relative minor stress, resulting in 

deleterious effects of chronically high glucocorticoids on many systems (316).

Epigenetic changes induced by stress are not limited to early life experiences (230, 291). 

Biochemical and behavioral consequences of chronic social stress in adolescent mice were 

evident immediately after cessation of the stress regimen, including a significant decrease in 

the expression of hippocampal MR and GR mRNA, increased corticosterone levels with 

dampening of the circadian rhythm, and greater anxiety related behaviors compared to 

unstressed mice (426). Twelve months later the relative decrease in MR expression and 

increased anxiety-like behavior were still evident, suggesting epigenetic effects (426). The 

transcriptional response to an acute stress level dose of glucocorticoids differs between 

naïve rats and those having experienced chronic stress in the past, including altered 

expression of genes for enzymes involved in DNA and histone modulation and an increase 

in those associated with apoptosis in the dentate gyrus (85).

Excessive continuous GR activation in depression and Cushing’s disease increases arousal at 

the expense of cognition (29). As in animal studies, methylation of the GR gene differs in 

different areas of the brain in humans, however no differences were found when GR 

methylation patterns were compared between those with major depressive disorder and 

controls (11). Comparative little is yet known about the epigenetic regulation of the MR 

(230).

In summary, due to their homology, MR and GR share ligands and many chaperones, HREs, 

and transcription coregulatory proteins. Coregulatory proteins and relative expression of 

MR:GR, as well as the expression of 11β-HSD1 and 2, enzymes that modulate the 

concentrations of cortisol and corticosterone within the cell, are cell-type and context 

dependent. MR and GR form homodimers and heterodimers depending on the relative 

amounts of activated receptors, the functional consequence of which we are just beginning 

to appreciate. Clearly, the transcriptional functions of the MR and GR do not conform to the 

simple lock and key model of receptor activation, Figure 3. In addition to providing a 

mechanism to silence genes during cell differentiation, epigenetic changes modulating the 

expression of proteins including the GR and MR, are a mechanism for adaptation to the 

environment that under some circumstances is pathological.

Rapid nongenomic actions of the membrane-associated MR and other members of the 

steroid hormone receptor superfamily are mediated by classical cell signaling pathways and 

do not require transcription (72, 195). Rapid steroid effects were reported 70 years ago by 

Hans Selye (410) and for aldosterone within 3 years of its isolation (145). It was later 

demonstrated that aldosterone mediated both rapid efflux of 22Na from arterial smooth 

muscle that was inhibited by MR antagonists, but not the transcription inhibitor 

actinomycin, as well as delayed effects that were dependent upon transcription and protein 

synthesis (313). Rapid nongenomic MR effects may result secondarily in transcriptional 

events, obscuring the separation between transcriptional and rapid signaling effects. Studies 

have also been complicated by confusion of rapid nongenomic effects mediated by steroid 

hormone receptors and those mediated by steroid hormones through G-protein coupled 

receptors independently of their cognate steroid hormone receptor (124, 190).

Gomez-Sanchez and Gomez-Sanchez Page 16

Compr Physiol. Author manuscript; available in PMC 2015 July 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Methods similar to those used to demonstrate the membrane association of the estrogen 

receptors (ERα and β) (205, 207) have been used to study the MR, including the use of 

aldosterone conjugated to BSA that prevents the steroid from crossing the plasma membrane 

(43, 150, 191, 271). MR was shown to colocalize with the EGFR within the plasma 

membrane by coimmunoprecipitation and FRET and disruption of the membrane with 

cyclodextrin decreased this association (196). A 24 h incubation with very high levels of 

aldosterone caused most MR, including those associated with EGRF, to enter the nucleus, 

however inhibition of Hsp90 prevented MR nuclear translocation without altering the 

number of MR associated with EGRF (196). cSrc is a cytosolic tyrosine kinase important for 

rapid nongenomic functions of ER, PR and MR. While most of the MR molecule 

comprising the ligand binding, DNA binding, hinge, and N-terminal domains where 

coactivators and corepressors bind is necessary for classical MR transcriptional activity, a 

truncated MR comprising only the EF domain (C-terminal) that includes the LBD and cSrc 

binding site suffices for rapid EGFR transactivation and ERK1/2 phosphorylation (194). 

Rapid MR initiation of the cSrc dependent EGFR transactivation and ERK1/2 

phosphorylation increases collagen III synthesis, a crucial component for normal repair that 

in excess leads to pathological vascular and cardiac remodeling (194, 473).

A palmitoylation site on the ER is thought to allow its anchoring to the plasma membrane 

(281, 370); however, such a sequence has not been identified in the MR sequence. MR 

associate with caveolins, proteins associated with lipid rafts and plasma membrane 

invaginations called caveoli (64, 231, 358) and caveolin-1, (Cav-1) does have a 

palmitoylation site to which c-Src tyrosine kinase is bound (263). Activation of MR 

increases the expression of both Cav1 (231) and Src (265). C-Src is implicated in the 

nongenomic activation by MR of mitogen-activated protein (MAP) kinase, resulting in the 

increase in NADPH-driven generation of reactive oxygen species, an important signaling 

event for normal function, but which in excess leads to vascular inflammatory damage (62, 

64).

Cell signaling pathways mediating nongenomic MR effects differ for different cells and 

include protein kinase C (PKC), cyclic adenosine 3′, 5′-monophosphate (cAMP), and 

Phosphoinositide 3-kinases (PI3K), with downstream activation of a variety of cell-type 

specific kinases, ion channels and pumps (134, 193). PI3Ks, along with PLC, generate IP3 a 

second messenger crucial to many intracellular signaling events. As described above, among 

the events involved in rapid extra-nuclear MR effects are epidermal growth factor receptor 

(EGFR)-dependent phosphorylation of ERK1/2 and c-Jun NH2-terminal kinase (JNK) 1/2 

kinases, and activation of MAPK kinase (MEK) and cSrc kinase (62, 63, 191, 192). While 

some rapid MR-mediated effects are ephemeral, for example, inotropic and chronotropic 

changes in cardiomyocytes (59), others persist for a relatively long time (191, 261).

Rapid transient movement of Ca++ is an important nongenomic effector of MR rapid 

action in renal tubular epithelial cells, cardiomyocytes, vascular smooth muscle cells, and 

neurons. Rapid nongenomic MR activation of the N+/H+ exchanger NHE-1 results in rapid 

changes in ion transport in the tubular epithelial cells of the kidney and in intracellular Ca++ 

transients necessary for vasoconstriction of mesenteric resistance vessels (303). Stretch-

triggered reactive oxygen species generation in the cardiomyocytes was found to activate 
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redox-sensitive kinases upstream of the NHE-1, resulting in mobilization of intracellular 

Ca++ (59, 102).

Activation of NADPH oxidase and generation of reactive oxygen species (ROS) is an 

important mechanism of normal MR signaling in various types of cells including the macula 

densa, renal tubular epithelia, cardiomyocyte, and neurons of the PVN and hippocampus 

(59, 187, 244, 360, 513). In renal tubular epithelia rapid MR signaling through ROS derived 

from NADPH oxidase activation is critical for acute ion homeostasis (400); transcriptional 

MR effects are slower, providing tonic regulation of ion transport. MR signaling through 

NADPH oxidase-derived ROS produces stretch-induced slow force generation during each 

heart beat (59), activates presympathetic neurons of the PVN of the hypothalamus (118, 239, 

487), and leads to Rac1 dependent ERK1/2 phosphorylation in hippocampal neurons, 

enhancing excitatory potentials (244). ROS in vascular smooth muscle cells are crucial for 

the rapid regulation of vascular tone by increasing IP3-mediated cytosolic Ca++ 

accumulation through the inhibition of sarcoplasmic/ER Ca++-ATPase and stimulation of 

Ca++ influx through Ca++ channels to increase intracellular Ca++ (442).

MR-mediates rapid EGFR activation. EGF is a regulator of cell differentiation and 

proliferation, as well as repair. MR facilitates the EGF-EGFR-MEK1/2-ERK1/2 signaling 

cascade in several cell models by increasing phosphorylation of c-Src and EGFR (191, 195, 

228, 253). MR-mediated rapid EGFR transactivation synergizes with the activation of the 

angiotensin II receptor type 1 (AT1R) (59, 195, 228) and is potentiated by non-MR-

mediated aldosterone action through GPR30 (GPER) at physiological concentrations (24).

Na+/K+-ATPase pump as a mediator of rapid MR signaling. Increasing Na+/K+-ATPase 

pump activity on the basal side of transport epithelial cells is a prototypical 

mineralocorticoid transcriptional function ascribed to aldosterone and MR activation (3, 

285); however, the complexity of the relationship of the MR with the Na+/K+-ATPase pump 

was demonstrated over 20 years ago when it was shown that the rapid suppression of 

baroreceptor function by aldosterone (maximal within 15 min of aldosterone infusion) was 

inhibited by either the MR antagonist spironolactone or ouabain, a cardenolide isolated from 

plants of the Strophanthus and Acokanthera genuses (262, 469). Like other cardenolides, 

ouabain inhibits the ion-pumping function of Na+/K+-ATPase; it differs from the others in 

that it also increases the activity of other ion channels in vascular smooth muscle and other 

excitable cells (38) by activating the Na+/K+-ATPase-associated Src, resulting in the 

stimulation of protein tyrosine phosphorylation (264). Depending on the cell type, this may 

stimulate growth and proliferation pathways, sometimes at concentrations of ouabain below 

those needed to inhibit Na+/K+-ATPase ion pump (29, 248). Na+/K+-ATPase and Src can be 

coimmunoprecipitated and are concentrated in caveoli along with the membrane associated 

MR (265).

An endogenous cardiotonic steroid or ouabain-like factor has been implicated hypertension 

and heart failure (37, 38, 176, 203, 226, 467, 470). A large amount of evidence has 

accumulated supporting a proposed aldosterone-endogenous ouabain pathway for slower 

tonic central control of the sympathetic nervous system and blood pressure (140, 226); 

however, the concept remains controversial because despite over 30 years of effort, the 
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mechanism for the synthesis of a ouabain-like molecule in a mammal has not been 

discovered, nor have intermediates or metabolites been isolated (202, 444).

Rapid signaling effects of the MR are cell-type and context specific. In endothelial cells, 

MR activation stimulates the PI3K pathway and increases NO synthase (267); in vascular 

smooth muscle cells, it increases myosin light chain phosphorylation (119). Aldosterone 

causes rapid vascular dilation and attenuation of α-adrenergic constriction of intact rat aortic 

arterial rings, but increases α-adrenergic constriction of aortic rings denuded of endothelium 

(119, 267). Thus, vascular endothelial dysfunction tips the balance between rapid 

aldosterone induced dilation in favor of constriction and explains discordant results of 

studies of human forearm blood flow (116, 327).

Genomic and nongenomic effects of the MR may act in opposition in the same cell. 

Increased synthesis of ENaC and Na+/K+-ATPase subunits are classical MR transcriptional 

functions (12, 247, 285). MR also rapidly activates ERK1/2 and EGF; both inhibit sodium 

transport through ENaC (192). MR also acutely inhibits vascular Na+/K+-ATPase activity, 

an effect that is not altered by inhibitors of gene transcription or protein synthesis, but 

blocked by inhibitors of the MR and protein kinase C (PKC) (12). Increased transcription of 

striatin by MR indirectly counters its nongenomic stimulation of vascular smooth muscle 

proliferation by enhancing nongenomic ER effects (357, 376).

Rapid nongenomic effects are avenues for steroid hormone receptor interaction and fine 

tuning of physiological effects. Aldosterone, glucocorticoids, and estradiol act through their 

cognate receptors to shift the balance from net secretion to net absorption in epithelia of 

various types, as well as cell growth and migration (212-214, 231, 377). The interaction 

between ER, MR, and GR may underlie gender differences that disappear after menopause, 

including the lower risk for cardiovascular diseases and higher risk for anxiety and 

depression in women compared to men with PA (14).

Striatin is a scaffolding protein first isolated from the brain that is involved with vesicular 

transport and interaction with the neuronal membrane. In vascular tissue striatin provides an 

anchor for the membrane association of ERα and is necessary for the vasoprotective ERα-

mediated rapid nongenomic signaling through NO synthase (30, 39, 449). MR coprecipitates 

with both caveolin 1 and striatin (357), suggesting an interaction between the two membrane 

receptors and the possibility that rapid nongenomic MR effects leading to adaptive repair 

and hypertrophy that in excess cause deleterious vascular smooth muscle proliferation is 

countered by nongenomic ER effects inhibiting vascular smooth muscle proliferation, an 

effect enhanced by transcriptional MR effects increasing the expression of striatin (357, 

376). In vitro and in vivo increases in aldosterone, including physiological increases by 

feeding a low sodium diet, were reported to increase striatin expression in the heart, vessels 

and cultured endothelial cells, thereby enhance rapid nongenomic ER effects (357,376). The 

increase in striatin was blocked by an MR antagonist. However, the mechanism for 

aldosterone access to MR in tissues devoid of 11β-HSD2 such as the heart was not 

addressed by this study (or many others). Figure 3 includes the schematic representation of 

possible ER and MR interaction through striatin.
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The interaction between MR- and GR-mediated effects have been most thoroughly studied 

in the hippocampus (94, 209, 318, 372, 391) where coordinated rapid nongenomic MR and 

GR actions modulate arousal and anxiety (187, 511). The integration of rapid nongenomic 

and transcriptional effects of MR and GR are necessary for the integrated response to 

arousal, stress, and anxiety with that of learning in the forebrain, hippocampus and 

hypothalamus (187,347,419,511). Mice with a selective forebrain deletion of MR have 

uncontrolled arousal and anxiety that impedes cognition (29,46), while overexpression of 

MR (257) or reducing GR in the forebrain reduces anxiety (245). Overexpression of the MR 

in the dentate gyrus granule cell layer in rats also enhances the consolidation of nonspatial 

memory, augments short term memory, and protects against the effects of glucocorticoid 

excess in rats (121, 122), while selective overexpression of the MR in the basolateral 

amygdala of adult rats is anxiolytic and dampens to the response to acute stress (305). 

Activation of GR decreases the excitability of neurons produced by a stressful event, thereby 

restoring normal function (392); however, severe stress early or chronic stress later in life 

leads to epigenetic changes increasing GR expression and chronic suppression of neuronal 

excitation producing animal behaviors analogous to depression in humans (68,85). 

Expression of a negative transdominant GR in the dentate gyrus in rats reduced the 

impairment in long-term special memory produced by the administration of stress levels of 

corticosterone (122). While most studies involve the deleterious effects of a decrease in the 

MR:GR ratio (209), a decrease in functional GR creates problems as well. Transgenic mice 

with only half of normal GR function compensate by increasing HPA activation, resulting in 

a concomitant increase MR activation and hypertension (302). In summary, transgenic mice 

with tissue-specific alterations in the MR:GR ratio confirm the importance of this balance 

which varies for the different brain regions (245).

Electrophysiological studies indicate that MR associated with pre- and postsynaptic 

membranes in hippocampal neurons are essential for the phenomenon of long-term 

potentiation (LTP) required for memory and learning (187, 236, 278, 340). Corticosterone 

acting through MR rapidly enhanced the frequency of miniature excitatory postsynaptic 

potentials in hippocampal CA1 pyramidal neurons and reduce paired-pulse facilitation, 

probably through increased glutamate release (241). The effect was prevented by MR, but 

not GR antagonists, however the concentration of corticosterone required for this effect was 

higher than that required for MR transcriptional activity, though lower than that for GR 

activation, suggesting that the membrane MR has a lower affinity for corticosterone than the 

transcriptional or cytosolic MR (241).

Normally plasma glucocorticoid concentrations have pulsatile increases of approximately 1 

h superimposed upon their circadian rhythm. The amplitude and frequency of these pulses 

alter the neuroendocrine and behavioral responses to stress-induced glucocorticoid surges 

(79, 392) that activate GR and are responsible for the appropriate graded response to and 

recovery from stress (236, 241, 401, 403). Thus, the health status of an individual may be 

one of the causes of the discrepant results of the effect of MR antagonists on affect and 

cognition in human studies. The other is the dose of the MR antagonist. For example, 

currently spironolactone at 12.5 to 100 mg daily with titration to effect is used in most heart 

failure regimes and for inoperable PA. As in experimental animals, short-term treatment of 

healthy men with 300 mg of an MR antagonist increased baseline cortisol secretion and 
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impaired selective attention, visual-spatial memory, mental flexibility/set shifting, and the 

ability to learn under stress, but had no effect on experimentally induced panic symptoms 

(347, 407).

Treatment of PA patients with MR antagonists benefits their cardiovascular and electrolyte 

parameters, yet does not ameliorate cognitive scores, while removal of an aldosterone 

producing adenoma and normalization of aldosterone levels significantly improves both 

systemic and cognitive function (7, 255). As levels of aldosterone in these patients are not 

high enough to compete with cortisol for MR binding in nonaldosterone target tissues, these 

results suggest a deleterious role for excessive aldosterone activity through a non-MR-

mediated mechanism. As mentioned above, MR antagonists increase performance on 

psychosocial measures of quality of life and cognitive tests in patients with severe 

cardiovascular complications (84, 218) associated in part with increased pulmonary function 

and oxygenation (4), but had deleterious effects in those with milder disease (32), 

demonstrating the importance of assessing and optimizing the health of the whole organism.

In summary, the optimal balance between MR and GR activation with MR predominating in 

the hippocampus is necessary for best emotional and cognitive function (47, 209, 235, 241, 

347, 511). Evidence of the deleterious effects of chronic GR overexpression and activation 

suggests that a selective GR antagonist would be a useful adjunct to the treatment of stress-

related cognitive disorders (90, 236), as well as systemic problems as diverse as 

cardiometabolic syndromes (220) and wound healing (497), but to date there is none, in 

great measure due to the homologies of the LBDs of steroid receptors, as discussed above. 

RU-486, mifepristone, initially developed in search of a GR antagonist, is also a potent 

antagonist of the progesterone receptor. Notwithstanding, results of its selective use in 

psychiatric disorders has been promising (223, 324).

Steroids may act through G-coupled protein receptors. As shown in the flow chart in Figure 

1, in addition to rapid effects mediated by membrane-associated steroid hormone receptors 

that are inhibited by classical steroid receptor antagonists, steroids may have rapid effects 

that are independent of their cognate ligands (190, 193, 269, 474). Skepticism about rapid 

nongenomic effects of aldosterone were based on early erroneous reports about their kinetic 

characteristics and the demonstration that some rapid nontranscriptional aldosterone effects 

were insensitive to MR antagonists, yet others were (212, 270, 475, 476). Atomic force 

microscopy demonstrated strong aldosterone binding sites on plasma membranes of cultured 

human vascular endothelial cell that are blocked by addition of aldosterone to the media, but 

not by spironolactone or dexamethasone which avidly bind MR and GR, respectively (481). 

Among the MR-independent aldosterone effects is the rapid increase in cAMP in vascular 

smooth muscle cells for which aldosterone, not estradiol, was shown to be an agonist at 

physiological concentrations (73). Aldosterone activates the G protein-coupled receptor 

GPER, formerly called GPR30, in freshly isolated vascular smooth muscle and endothelial 

cells at physiological concentrations producing cell type-specific signaling effects (119, 188, 

190, 476). Freshly isolated rat aortic endothelial cells which express GPR30, but not MR, 

respond similarly to a GPR30 agonist and aldosterone with rapid ERK phosphorylation 

mediating proapoptotic and antiproliferative effects that are prevented by a GPR30 

antagonist (189). GPR30 is also bound and activated by estrogen at supraphysiological 
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concentrations, but not by cortisol, progesterone, or testosterone (119, 124, 137, 188, 190). 

The implications of an aldosterone signaling mechanism that is not replicated by 

endogenous levels of glucocorticoids are tremendous. In vitro, activation of GPER enhances 

both ERα and MR responses in vascular smooth muscle (119, 190).

Despite the low affinity of GPR30 for estrogen relative to its maximal circulating 

concentrations making it highly unlikely that estrogen is an endogenous ligand, GPR30 was 

renamed the G-protein coupled estrogen receptor (GPER). The issue of the endogenous 

ligand for this receptor remains contentious (23, 124, 137, 189). It was reported that GPR30 

activation induces the expression of the ERα variant ERα36 and that the cell signaling 

cascade initiated by estrogen is prevented by an antibody against ERα36, suggesting that 

ERα36, not GPER is the receptor for the membrane effects of estrogen (238). Another study 

using similar methods found that the vasodilation of the rat middle cerebral artery produced 

by estradiol was mediated by both ERα36 and GPR30 (348). This controversy demonstrates 

the importance of considering physiological levels of agonists when interpreting effector 

actions and interactions.

MR-independent aldosterone actions may be important for glycemic control, as resection of 

an aldosterone producing adenoma usually improves insulin resistance, yet despite their 

beneficial effects on cardiovascular function and remodeling, MR antagonists do not 

significantly ameliorate glucose homeostasis or insulin resistance associated with PA, nor 

impaired endothelial dysfunction in diabetics, suggesting an non-MR-mediated effect of the 

aldosterone (282). Adrenal steroid signaling through G-protein coupled receptors is beyond 

the scope of this review of the MR; however, they must not be overlooked in analyzing the 

effects of pharmacological interventions, particularly since such signaling may provide 

mechanisms for direct interactions between hormones, for example, aldosterone and 

glucocorticoids with estrogens and/or with Angiotensin II (24, 188, 190, 491).

Pathophysiological Implications of Inappropriate MR Activation

Pathophysiological implications of inappropriate MR activation reflect the diversity of MR 

functions. The following is not a comprehensive list, but should serve as examples of the 

effects of perturbing such a complex system. PA is associated with hypertension, 

hypokalemia, greater cardiovascular remodeling compared to essential hypertension of 

similar duration and severity, a greater incidence of cardiovascular and renal disease, and 

insulin resistance (216). However, even in severe PA, aldosterone concentrations are still 

two orders of magnitude less than those of free cortisol, therefore, it is not clear how these 

levels of aldosterone have such marked effects in tissues that do not express 11BHSD2 such 

as the heart. Nonetheless, treatment with MR antagonists suppress the cardiac remodeling, 

as well as the hypertension and hypokalemia, in patients with PA and are valuable adjuncts 

to the treatment of chronic heart failure even when the patient has normal to low plasma 

aldosterone levels (33, 355, 356).

Hypertension is associated with inappropriate MR activation and sodium accelerates and 

exacerbates the increase in blood pressure and end-organ damage. Mineralocorticoids were 

so named because of their marked effects on electrolyte balance and action in the kidney and 
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toad bladder; a name proposed for aldosterone upon its isolation was “electrocortin” (198, 

417). It soon became clear that, in addition to the kidney, mineralocorticoids acted directly 

upon the vessels and brain to contribute to the hypertension and that elevated sodium 

consumption exacerbated these nonrenal effects (27, 44, 51, 78, 108, 201, 237, 259, 272, 

457). While the model of excess mineralocorticoid-salt hypertension has been used 

profitable to study mechanisms of hypertension and cardiovascular pathology, normally 

aldosterone production is suppressed by sodium intake and increased by low blood pressure 

through the renin-angiotensin-aldosterone system (RAAS). Blood pressure has been 

simplified as the result of [cardiac output] X [total peripheral resistance]; MR-mediated 

effects support both sides of the equation. On the cardiac output side, MR activation 

increases sodium appetite, sodium reabsorption through renal and colonic epithelia resulting 

in water retention, and inotropic effects. On the resistance side, MR increase 

vasoconstriction through MR in vessels and those modulating sympathetic nervous system 

drive to the vessels.

The anterior hypothalamus and brain stem, identified by autoradiography as areas of 

prominent aldosterone binding (35, 430), were demonstrated by ablation studies to be 

essential for mineralocorticoid-salt hypertension (50). Mineralocorticoid-salt excess and 

renovascular hypertension were found to be abrogated by a lesion of the area anteroventral 

to the third ventricle (AV3V). The components of this lesion, the organum vasculosum of 

the lamina terminalis, ventral portion of the median preoptic nucleus, anteroventral 

periventricular nucleus, and the PVN, plus nerve fibers that relay information between these 

structures and areas receiving and integrating hemodynamic information from the periphery, 

including the NTS and lateral parabrachial nucleus in the medulla, and PVN, supraoptic and 

median preoptic nuclei of the hypothalamus (50) were further studied with more discrete 

lesions and shown to involve multiple regulatory systems including those for osmoreception, 

water and sodium homeostasis, integration of baroreceptor and autonomic nervous system 

information, and secretion of vasopressin and natriuretic factor (25, 144). The pivotal role of 

the sympathetic nervous system in mineralocorticoid hypertension was also recognized early 

(26-28, 295).

Chronic lateral intracerebroventricular (icv) infusions of MR agonists at doses too small to 

increase sodium appetite or have an effect when infused systemically, were shown to 

produce hypertension associated with an increase sympathetic nervous system activation and 

release of vasopressin and a decrease in baroreceptor sensitivity (162, 233) [reviewed in 

(175)]. More germane to deciphering the role of central control of the blood pressure, the icv 

infusion of a MR antagonist at a concentration too small to have an effect when infused 

systemically prevents mineralocorticoid excess-salt hypertension (167). The icv infusion of 

small interfering RNA (siRNA) for the MR or AT1a angiotensin II receptor (AT1aR) 

confirmed the specificity of these studies and previous evidence of the significant synergism 

between Angiotensin II and aldosterone signaling through the AT1R and MR in stimulating 

the sympathetic nervous system (487). The icv infusion of an antagonist of the ENaC, a 

major effector of MR-mediated activities in ion transport epithelia, also prevents the 

hypertension and sympathetic nervous system activation (1, 172, 225, 226). The icv infusion 

of an MR antagonist prevents the hypertension of carbenoxolone and glycyrrhizic and 

glycyrrhetinic acid, nonselective 11β-HSD antagonists administered systemically or orally, 
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suggesting that, as in Apparent Mineralocorticoid Excess, endogenous glucocorticoids was 

the agonist of central MR (171), however the concomitant icv infusion of corticosterone 

inhibited the hypertensinogenic effect icv aldosterone in a dose related fashion (180). The 

molecular basis for this inhibition has not been ascertained.

The effects of excessive MR activation on blood pressure, salt appetite, and cardiovascular 

pathology are separable. Aldosterone infused into the lateral ventricle at small 

concentrations produces hypertension without increasing sodium appetite or causing cardiac 

and renal hypertrophy after 8 weeks of hypertension (162,163). Prevention of the 

hypertension produced by systemic mineralocorticoid-salt excess with the icv infusion of a 

low dose of MR antagonist does not prevent the extensive renal, vascular and cardiac 

damage (498). These studies and several more since (123) demonstrated that hypertension 

and end-organ disease produced by excessive MR activation are separable. While low 

hypertensinogenic concentrations of aldosterone infused icv did not increase the sodium 

appetite, they do when infused into the fourth ventricle (126), near the aldosterone selective 

neurons of the NTS that express both MR and 11β-HSD (149, 425). These neurons receive 

information about sodium intake and plasma concentration from the vagus nerve and about 

osmolality from area postrema neurons (149, 414, 425) and project to neurons in the 

parabrachial nuclei, which in turn project to the central nucleus of the amygdala, another 

area of the brain mediating salt appetite. Infusion of an MR antagonist or MR antisense 

oligonucleotides into the amygdala inhibits the increase in salt appetite produced by 

mineralocorticoid excess (389).

Inflammation and excessive ROS are caused by inappropriate MR activation, particularly 

in the context of high salt intake, and result in sympathetic nervous system overactivation, 

hypertension, kidney, vessel and heart hypertrophy, and fibrosis (33, 156, 159, 175, 273, 

319, 477, 487, 513). Experimentally, the inflammation that precedes these events is 

prevented by the inhibition of MR, as well as NADPH oxidase inhibitors and ROS 

scavengers, such as apocynin and tempol, respectively, and the tumor necrosis factor 

antagonist, etanercept (239, 244, 361, 362, 387, 487, 513). In addition to mitigating the 

cardiovascular pathology, inhibition of TNF after in experimental heart failure also 

alleviated the anhedonia, a surrogate symptom of depression, in rats (185). While 

aldosterone is implicated as the activator of the MR responsible for tissue inflammation in 

human clinical situations, including in the heart where 11β-HSD2 expression is limited (61), 

it has been difficult to explain how the MR is activated because circulating aldosterone 

concentrations are most often normal or low. Increased ROS from any source has been 

found experimentally to activate MR independently of ligand (118, 128, 175, 388). An 

alternative proposal is that in many nonepithelial tissues, for example, the heart, occupation 

of MR by glucocorticoids limits MR function; oxidative stress changes the conformation 

and activates the quiescent MR:cort complexes (135, 258).

Circulating proinflammatory cytokines stimulate the sympathetic nervous system (118, 

433, 501), however they do not cross the blood brain barrier. They produce sympathetic 

excitation by inducing cyclooxygenase 2 activity in perivascular macrophages leading to the 

synthesis of prostaglandin E(2) which does diffuse across the blood brain barrier and acts 

within the PVN to activate MR and NADPH oxidase, leading to sympathetic nervous system 
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excitation, as well as inflammatory cytokine production in the CNS (240). This cascade of 

events is inhibited by antagonists of cytokines, COX-2, NADPH oxidase, and MR, as well 

as ROS scavengers (118, 487, 501). These pharmacological measures also prevent the 

excessive sympathetic nervous system activation and hypertension in aldo-salt and AII-salt 

excess models (487). Transgenic mice with reduced ability to produce prostaglandin E were 

less susceptible to the effects of induced inflammation (31).

Obesity, a component of Metabolic Syndrome or Cardiometabolic Syndrome (119, 220, 

383, 478, 503), is associated with increased markers of inflammation, inflammatory 

cytokines and tissue ROS, insulin resistance, and activation of the RAAS and sympathetic 

nervous system, in addition to cardiac pathology (156, 286, 412, 478, 503). Treatment with 

MR antagonists decreases both cardiovascular risk markers and insulin resistance even in 

insulin-dependent diabetics (260, 440, 463, 503). Aldosterone may have a primary or 

amplifying role in the Cardiometabolic Syndrome. PA is associated with alterations in the 

HPA axis (157) and shares obesity-related cardiometabolic risk factors including insulin 

resistance and diabetes mellitus that are ameliorated with treatment (115,155,384). Subjects 

with the highest quartile of plasma aldosterone within the normal range have the highest risk 

for the development of hypertension, deleterious cardiac remodeling, obesity, and insulin 

resistance (16,182,458,459). Conversely, weight loss in young obese adults lowers 

aldosterone along with cardiometabolic risk factors (383). HIV-infected women who 

develop visceral obesity on retroviral treatment have higher aldosterone production, blood 

pressure and hemoglobin A1c compared to age- and BMI-matched HIV-infected women 

without visceral obesity and healthy controls (268).

Feedback sensitivity of the HPA axis of Zucker obese rats is less than that of lean rats and 

associated with decreased expression of hypothalamic MR and 11β-HSD1, but not GR 

(288). Lowered reductase activity means less conversion of cortisone to cortisol within CRH 

neurons and corticotrophs, resulting in higher baseline circulating cortisol levels to produce 

negative feedback. Obese men, compared to age matched control of normal BMI were also 

found to have a dampened negative HPA feedback response (289).

In contrast, net increase in reductase activity resulting in the conversion of cortisone to 

cortisol in other tissues, whether due to increased 11β-HSD1 or decreased 11β-HSD2, is 

thought to allow cortisol to activate the MR inappropriately in the cardiometabolic 

syndrome (16, 69, 219, 398, 503). MR, 11β-HSD2 and 11β-HSD1 are expressed in vascular 

smooth muscle and vascular endothelial cells. 11β-HSD1, but not 11β-HSD2, is increased in 

aortic vascular smooth muscle cells by inflammatory cytokines (58). This increase is 

adaptive in acute injury or stress, however increased 11β-HSD1 and glucocorticoid action 

due to the chronic inflammation in cardiometabolic syndrome or diabetes leads to 

inappropriate MR and GR activation (69, 70). It has been proposed that structural damage 

and remodeling of vessels associated with age, is caused by a relative increase in 11β-HSD1 

over 11β-HSD2 activity, allowing cortisol to activate the MR, as well as the GR, upsetting 

the normal MR:GR activation ratio (200,221). Limited early trials with selective 11β-HSD1 

antagonists improved glycemic control in obese type 2 diabetics (20, 219, 466). Selective 

11β-HSD1 antagonists may also accelerate wound healing by decreasing GR-mediated 

effects that impede MR trophic and fibrotic repair effects (473, 497). Epigenetic events 
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during gestation and early childhood related to growth restriction and/or stress increase the 

relative expression of 11β-HSD1:11β-HSD2 and are associated with cardiometabolic risk in 

the adult (81, 220, 375, 484).

Activation of MR is required for adipocyte maturation. Glucocorticoids and aldosterone 

activate the MR-mediated transcription of several genes, in particular PPARγ required for 

preadipocyte maturation, while selective agonists of the GR prevent maturation (66, 286). 

Drospirenone is an antagonist of the MR and AR and agonist of the progesterone receptor 

(PR) used in some contraceptives. Drospirenone inhibits adipocyte differentiation in vitro by 

blocking the MR which may add to its efficacy in the treatment of polycystic ovarian 

syndrome which is often, not invariably, associated with increased BMI, insulin resistance, 

hypertension, and hirsutism (65). In animal experiments aldosterone administration inhibits 

the expression of uncoupling protein-1 (thus decreases energy expenditure), impairs insulin-

induced glucose uptake, and increases mRNA for the proinflammatory adipokines leptin and 

monocyte chemo-attractant protein-1 in adipocytes isolated from brown fat (250). MR 

antagonists decrease the inflammatory profile in visceral fat of obese and diabetic ob/ob 

mice (199). Over the last two decades, it has been proposed that the adipocyte may release 

yet unidentified factors that stimulate aldosterone synthesis by the adrenal gland (111, 182, 

399), perhaps through the action of adiponectin (385), or that aldosterone may be 

synthesized by the adipocyte itself (48). Other laboratories have not been able to 

demonstrate CYP17 (17α-hydroxylase), CYP11B1 (11β-hydroxylase), and CYP11B2 

(aldosterone synthase) transcription required for either cortisol/corticosterone or aldosterone 

in adipose tissue, however the requisite enzymes for 11-deoxycorticosterone, also a 

mineralocorticoid were found to be significantly expressed (277).

Macrophages and T lymphocytes are also critically involved in MR-mediated 

hypertension, inflammation, and fibrosis (36, 156, 210, 211, 283, 284, 380). Transgenic 

mice with targeted MR deletion in monocytes are resistant to DOCA-salt hypertension and 

cardiac fibrosis (378). MR in macrophages are also required for the cardiac inflammation 

and fibrosis produced by L-NAME, an inhibitor of nitric oxide synthase, an inflammatory 

insult that does not involve the MR directly or increased aldosterone levels (33). Like 

cardiomyocytes, macrophages are not protected by 11β-HSD2; however, they do express 

abundant 11β-HSD1, suggesting that cortisol binding to their MR or GR is regulated (438).

Inappropriate sympathetic nervous system activation is one mechanism bridging 

inflammation, hypertension and insulin resistance (16, 249). In addition to being activated 

by circulating inflammatory cytokines (118,433,501), among the many adaptive functions of 

the sympathetic nervous system is to ensure adequate energy by increasing gluconeogenesis 

through the release of epinephrine and glucagon and induction of peripheral insulin 

resistance (331). Reduction of blood pressure with chlorthalidone, a diuretic commonly used 

in the treatment of hypertension and heart failure, activates the RAAS and sympathetic 

nervous system and promotes insulin resistance. Addition of an MR antagonist to the 

treatment regimen for these patients normalized both the sympathetic nervous system 

activation and insulin sensitivity (366). Early evidence for a role of the sympathetic nervous 

system as a mediator of aldosterone action in humans was inconsistent in part due to 

inappropriate methods and controls (175). As in experimental animals, the infusion of 
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aldosterone in human volunteers to raise plasma levels to the pathophysiologic range 

increased muscle sympathetic nerve activity and impaired baroreflex responses (309). 

Sympathetic nervous system activity is elevated in essential hypertension, as well as 

untreated PA (248, 326). Treatment with an MR antagonist or resection of the aldosterone 

producing adenoma in PA decreases blood pressure and sympathetic nervous system 

activity. Removal of an aldosteronoma resulting in normal aldo levels has a greater 

normalizing effect upon pathological remodeling of the heart, glycemic control, and the 

depression associated with PA (280, 282, 420), suggesting that MR-independent aldosterone 

actions are partially responsible for these effects.

Development and function of neurons and neuron networks requires the appropriate balance 

of MR:GR activation. Aldosterone increased MR expression in ESC-derived neurons 

through both P1 and P2 promoters, leading to an increase in their resistance to oxidative 

stress and survival (315). Corticosterone, but not aldosterone produced apoptosis in these 

stem cell derived neurons. Increasing the MR:GR ratio in these ESC-derived neurons 

protected them against apoptosis when treated with concentrations of corticosterone that 

activated both receptors (146, 314). These in vitro results confirmed those described in live 

animals. In general, excessive and chronic GR activation leads to hippocampal neuron 

atrophy and eventually death; MR activation is antiapoptotic and supports neurogenesis 

(290) Adrenalectomy in the adult rat causes apoptosis of granule cells in the dentate gyrus 

which was shown to be completely reversed by aldosterone replacement, but only partially 

by a selective glucocorticoid agonist (483). In the adult brain excessive GR activation 

increased the expression of the tumor suppressor protein p53, a direct transcriptional 

regulator of the proapoptotic bax and bcl-2 genes, and induced hippocampal granule cell 

apoptosis, while MR activation suppresses p53 transcription in developing and mature 

hippocampal neurons and is protective (10, 82). Overexpression of the MR in the mouse 

forebrain protected neurons from transient global ischemia (257).

Changes in the relative expression of 11β-HSD1 and 2 in the placenta and fetus throughout 

ontogeny is crucial for the proportional activation of MR and GR required for the 

development of fetal organs, particularly the brain, and there is a great deal of literature 

describing the effects of deleterious consequences of interrupting this balance, particularly 

by treatment of the mother with synthetic glucocorticoids not metabolized by 11β-HSD1 

(69, 222, 306, 406) including epigenetic changes in the expression of the GR (337, 422, 

472).

Response to stress is modulated by different levels of cort binding to MR and GR and 

interaction between rapid nongenomic and slower genomic (transcriptional) effects mediated 

by these receptors (91, 187, 278). Under normal conditions glucocorticoids activate MR in 

hippocampal neurons to mediate arousal and trophic effects that are dampened by higher 

stress levels of glucocorticoids through GR (89). The differential regulation of the 5-HT1A 

receptor in different parts of the hippocampus is an example of integrated GR and MR 

effects (325). At lower corticosterone levels MR activation alone downregulates 5-HT1A 

receptors and suppresses of serotonin-related activity in the raphe-hippocampal system. 

Transient increases in glucocorticoid concentrations producing GR occupation rapidly 

increases the ability for hippocampal neurons to respond to 5-HT1A receptor stimulation, 
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attenuates 5-HT autoinhibition, and facilitates stress-induced increases in 5-HT release, in 

part by increasing calcium influx and depolarizing the neurons (234,298). These 

concentrations also bind MR which through transrepression of the 5-HT1A receptor 

promoter by the MR:GR heterodimer, restores normal 5-HT1A receptor signaling after an 

appropriate delay and allows the brain to adapt to stress (343). However, chronic stress leads 

to chronic heterodimer formation and repression of 5-HT1A receptor transcription and 

depression-related behavior that led to the development of the selective serotonin reuptake 

inhibitors in use today (242, 298). As described in the section on epigenetic modifications of 

the MR and GR, chronic stress produces in rats many of the same biochemical changes 

found in depression (426).

Clinical depression is associated with plasma cortisol levels that remain relatively high 

with a flat circadian rhythm. Compared to control subjects, total MR and the ratio of 

MR:GR mRNAs in the prefrontal and anterior cingulate cortex and hippocampus is 

significantly decreased in persons with major depression, as well as bipolar disorder and 

schizophrenia (341, 359, 485). Conversely, MR message in the PVN was found to be 

increased in depressed patients (359). This increase in hypothalamic MR may be relevant to 

the consistent finding that depression and cardiovascular disease including hypertension are 

independent risk factors for one another. They also share neuroendocrine and inflammatory 

derangements, including inappropriate HPA, RAAS, and sympathetic nervous system 

activation and increases in circulating inflammatory cytokines, in particular TNFα 

(186,433).

Depression is a common comorbidity in PA (254, 280, 420). The choice of treatment of PA 

depends on the etiology of the autonomous aldo production. Removal of an aldosteronoma 

resulting in normal aldo levels ameliorates the hypertension, pathological remodeling of the 

heart and depression (280, 420). While medical treatment with an MR antagonist for 

bilateral hyperplasia or in lieu of aldosteronoma resection significantly ameliorates the 

cardiovascular components, there was no improvement in mood and cognition (254). As 

aldo levels remain high in medically treated patients, aldosterone may have MR-independent 

aldosterone actions in the brain, as well as on glycemic control (282). Alternatively or in 

addition, inhibition of some brain MR may be detrimental, as discussed below.

The addition of MR antagonists to standard treatment of heart and renal failure not only 

decreases morbidity and mortality, it has been shown in many studies to increase quality of 

life measures (386, 431, 502, 509). In addition, treatment of hypertensive subjects was 

reported to increase their score on a cognitive test (488). Quality of life measures are a 

complex distillation of multiple factors, including mood. The mechanisms of these 

beneficial effects of the MR antagonist may relate to the decrease in inflammation and 

cerebrovascular pathology, as well as general cardiovascular and renal functional 

improvement and decreased stress in these patients, as other clinical and experimental 

evidence indicates that MR function is crucial for normal mood and cognition and that MR 

inhibition has negative effects on neuronal function required for cognition.

In normotensive human subjects short-term blockade of the MR, increased cortisol and 

impaired selective attention, working and visual-spatial memory, and mental flexibility, 
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results that parallel those in animal models (80,342,492,511). Moreover, in a randomized, 

double blinded, placebo controlled study of treatment-naïve depressed patients, addition of a 

low dose of MR agonist, fludrocortisone, to an SSRI accelerated the onset of the 

antidepressant effect compared to the placebo or MR antagonist groups (there was no 

difference between the latter) (341). MR function is important for the performance of 

cognitive tasks under stress (403). Studies in normal volunteers studied using functional 

magnetic resonance imaging demonstrate that different learning strategies are used when 

learning under stress and that this adaptive compensation is prevented by pharmacologic 

blockade of the MR, resulting in suboptimal performance under stress (403).

LTP formation is essential for memory and learning. Early studies on the effect of 

adrenocorticosteroids on LTP formation demonstrated that activation of MR enhances and 

of GR suppresses LTPs in the dentate gyrus and CA1 & 3 areas of the hippocampus 

(349,350). MR at both pre- and postsynaptic membranes of hippocampal neurons appear to 

participate in LTP formation (187,278,340) and MR antagonists block both the formation 

and retrieval of memories (235, 347, 511). Corticosterone acts through MR to rapidly 

enhance the frequency of miniature excitatory postsynaptic potentials in hippocampal CA1 

pyramidal neurons and reduce paired-pulse facilitation, probably through increased 

glutamate release (241). The effect was prevented by MR, but not GR antagonists; however, 

the concentration of corticosterone required for this effect was higher than that required for 

MR transcriptional activity, suggesting that the membrane-associated MR has a lower 

affinity for corticosterone than the transcriptional or cytosolic MR (241).

Adrenalectomized mice receiving low corticosterone replacement that primarily activated 

MR were rapid learners, more exploratory and less anxious than controls, while those 

receiving stress levels of corticosterone were more aroused and had learning deficits (47). It 

was shown that mice use different learning strategies under low and high stress/

corticosterone situations and that the switch to learning under high corticosterone situations 

depended upon MR-mediated functions. MR antagonists prevented this switch, significantly 

impairing learning and memory (402). Transgenic mice in which the MR is deleted only in 

the forebrain have normal circadian levels and cycling of corticosterone, hypothalamic 

effects, but profound learning deficits, including loss of perseverance and exaggerated 

response to stress, associated with an increase in GR, and morphological changes in neurons 

(29, 46). Diabetes mellitus in humans is associated with increased glucocorticoid secretion 

and cognitive defects. In a streptozotocin mouse model of diabetes both the hippocampal 

morphology and cognitive abilities were partially normalized by treatment with a GR 

antagonist (374).

The acute administration of an MR antagonist in normal people increased plasma cortisol 

levels, thus the ratio of activated MR:GR was decreased both by decreasing activated MR 

and increasing GR (80). This imbalance was associated with impairment in selective 

attention, learning and memory and recapitulated many studies done in animals. As an 

example, formation and use of spatial memory is particularly dependent upon MR in both 

experimental animals (103, Oitzl, 1998, 121, p. 4208, 257, 492) and humans (342).
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The effects of sleep disruption on MR functions are still unclear. HPA suppression 

through the MR during early slow wave sleep is crucial for the formation of declarative 

memory in humans. Interruption of the normal sleep cycle by sleep apnea prevents memory 

(79). As obesity is frequently associated with sleep apnea and increased cortisol 

(60,181,354), this may be a mechanism for the lower cognitive function associated with 

obesity and the metabolic syndrome in humans (20, 56).

MR polymorphisms in the human impart varying degrees of altered function. Loss of 

function MR mutations produce pseudohypoaldosteronism with neonatal sodium loss (394, 

395). Patients with the very rare MR S810L substitution have pseudohyperaldosteronism 

with hypertension that is exacerbated during pregnancy because progesterone, rather than 

being an antagonist, is a full agonist of MR S810L (151). It is now known that rather than 

being constitutively active, the MR S810L is activated by cortisol, cortisone and 

progesterone, as well as the synthetic MR antagonists eplerenone and spironolactone (229, 

365). Several MR polymorphisms with less dramatic effects on electrolyte and blood 

pressure homeostasis have been studied primarily in the context of affect and cognitive 

function (40, 99, 100, 422, 454). The relatively common MR-l180V polymorphism has 

lower transactivation capacity and has not been associated with blood pressure changes. 

Subjects with the MR-l180V polymorphism have mildly altered the HPA axis, normal levels 

of cortisol upon awakening, and significant mild stress-induced learning deficits and risk for 

depression (40, 100, 246, 455). The MR c.-2G>C has a substitution of guanine for cytosine 

two nucleotides before the start codon, decreasing in vitro translational efficiency. The 

effect of SSRIs upon the HPA axis differs depending on MR c.-2G/C status and gender. 

Compared to homozygotes for the MR c.-2C/C allele, MR c.-2G/G subjects had lower MR 

protein expression in peripheral blood cells, higher renin and aldo levels as expected for a 

mild loss of function of peripheral MR, and in men, significant mild elevation of blood 

pressures (455). The higher blood pressure may be due to MR-independent actions of the 

higher aldosterone levels. Similarly, there are several GR polymorphisms associated with 

depression, as well as ability to perform cognitive tasks when distractors are present and 

decreased risk for dementia (421). With the development of less expensive methods of 

genotyping, current studies of the biology of common MR and GR polymorphisms should 

guide the choice of therapy for depression and cognitive disorders and will hopefully lead to 

early assessment of risk and development of rational prevention strategies.

Conclusion

The adrenal steroids aldosterone, cortisol, corticosterone and the adrenal androgens, as do 

other hormonal steroids, coordinate cellular activities throughout the body via cognate 

steroid hormone receptors. Steroid hormone receptors are ligand activated transcription 

factors that interact directly with the DNA and also initiate rapid nonnuclear events through 

secondary cell signaling mechanisms while associated with the plasma membrane. The GR 

and MR are often expressed in the same cells and are unique among the steroid hormone 

receptors in the complexity of their interactions as transcription factors; many transcriptional 

events depend on the balance of activated GR and MR. Cortisol and corticosterone are the 

primary ligands for both MR and GR in most nonepithelial cells. Prereceptor modulation of 

their concentrations through 11β-hydroxylation or reduction is crucial for cellular and whole 
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body homeostasis and occurs in selected cell populations. Evidence is accruing for a third 

mechanism of adrenal steroid function through the interaction with G-protein coupled 

receptors, the molecular mechanisms for which are not yet well understood.

Mineralocorticoids evolved under the pressures of maintaining an internal balance of water 

and electrolytes in an external environment where water and sodium were often limited and 

glucocorticoids took on the task of ensuring energy homeostasis to meet large and often 

rapidly changes in rates of energy expenditure. MR and GR often work in concert, often in 

counterpoint, to meet environmental challenges and appropriately terminate responses. 

Therefore, the ratio of MR to GR activation can be crucial for normal function, particularly 

in the brain, where highest concentrations of MR are expressed. Inappropriate MR and GR 

function are associated with Hypertension, Metabolic Syndrome or the most recent and 

encompassing term Cardiometabolic Syndrome, and Depression, diseases common in the 

Developed World where sodium and calories are not limited and stressors at many levels, 

disruption of the circadian rhythm by 24 h lighting is but one example, are chronic and often 

unremitting. Addition of MR antagonists to treatment regimens clearly mitigates symptoms 

of chronic heart failure and Cardiometabolic Syndrome, including small vessel disease in the 

brain that leads to ischemia and stroke with a net benefit to cognitive function despite 

reducing the MR:GR ratio. Use of GR antagonists have been hampered by lack of 

specificity, leading to the development and testing of 11β-HSD1 inhibitors. As we learn 

more about specific cellular mechanisms of MR- and GR-mediated function we should be 

able to identify and selectively target those responsible for inappropriate action producing 

disease.
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Figure 1. 
Aldosterone action. Aldosterone, cortisol, and corticosterone act through the 

mineralocorticoid receptor for which they have similar binding affinity to initiate 

transcriptional effects that take more than 3 h or rapid nongenomic effects that occur in 

seconds to minutes. The glucocorticoid receptor has similar slow transcriptional and rapid 

nongenomic effects in response to glucocorticoids, but not endogenous levels of aldosterone. 

Aldosterone, but not cortisol or corticosterone, activates GPR30(GPER) at physiological 

concentrations. Estrogen has not been demonstrated to activate GPER at physiological 

concentrations.
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Figure 2. 
Microsomal 11β-Hydroxysteroid dehydrogenases 1 and 2 provide prereceptor ligand 

specificity for MR and GR. 11β-HSD1, a reductase in most tissues, requires NADPH to 

convert cortisone and 11-dehydrocorticosterone to cortisol and corticosterone with a Km ~1 

to 3 μmol/L. In the presence of NADP+ or absence of hexose-6-phosphate dehydrogenase to 

regenerate NADPH, 11β-HSD1 is a dehydrogenase. 11β-HSD2 is a unidirectional NAD+-

dependent dehydrogenase which converts cortisol and corticosterone to the inactive 

cortisone and 11-dehydrocorticosterone, Km ~15 nmol/L. Aldosterone is not a substrate for 

the enzymes. Net dehydrogenase activity within the cell decreases glucocorticoid binding to 

the MR and GR and provides extrinsic specificity for aldosterone binding to the MR. 

Reductase activity increases glucocorticoid binding to both receptors.
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Figure 3. 
MR and GR act as ligand activated transcription factors that reside primarily in the 

cytoplasm bound to chaperone and scaffolding proteins when not bound to an agonist. Upon 

ligand binding they are transported to the nucleus where they form homodimers and 

heterodimers that bind hormone response elements on the chromosomes and associate with 

coactivator and corepressor proteins to modulate the transcription of effector proteins. Some 

chaperone and co-activator proteins bind both receptors. MR and GR associated with the 

plasma membrane within caveoli initiate rapid nonnuclear effects through classic cell 

signaling mechanisms. 11β-HSD enzymes within the endoplasmic reticulum (not depicted) 

modulate glucocorticoid concentrations for both the GR and MR. Interactions between 

receptors occur at multiple levels.
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