Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1997 Feb 15;99(4):582–591. doi: 10.1172/JCI119199

Characterization of the MODY3 phenotype. Early-onset diabetes caused by an insulin secretion defect.

M Lehto 1, T Tuomi 1, M M Mahtani 1, E Widén 1, C Forsblom 1, L Sarelin 1, M Gullström 1, B Isomaa 1, M Lehtovirta 1, A Hyrkkö 1, T Kanninen 1, M Orho 1, S Manley 1, R C Turner 1, T Brettin 1, A Kirby 1, J Thomas 1, G Duyk 1, E Lander 1, M R Taskinen 1, L Groop 1
PMCID: PMC507838  PMID: 9045858

Abstract

Maturity-onset diabetes of the young (MODY) type 3 is a dominantly inherited form of diabetes, which is often misdiagnosed as non-insulin-dependent diabetes mellitus (NIDDM) or insulin-dependent diabetes mellitus (IDDM). Phenotypic analysis of members from four large Finnish MODY3 kindreds (linked to chromosome 12q with a maximum lod score of 15) revealed a severe impairment in insulin secretion, which was present also in those normoglycemic family members who had inherited the MODY3 gene. In contrast to patients with NIDDM, MODY3 patients did not show any features of the insulin resistance syndrome. They could be discriminated from patients with IDDM by lack of glutamic acid decarboxylase antibodies (GAD-Ab). Taken together with our recent findings of linkage between this region on chromosome 12 and an insulin-deficient form of NIDDM (NIDDM2), the data suggest that mutations at the MODY3/NIDDM2 gene(s) result in a reduced insulin secretory response, that subsequently progresses to diabetes and underlines the importance of subphenotypic classification in studies of diabetes.

Full Text

The Full Text of this article is available as a PDF (240.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beck-Nielsen H., Groop L. C. Metabolic and genetic characterization of prediabetic states. Sequence of events leading to non-insulin-dependent diabetes mellitus. J Clin Invest. 1994 Nov;94(5):1714–1721. doi: 10.1172/JCI117518. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bell G. I., Xiang K. S., Newman M. V., Wu S. H., Wright L. G., Fajans S. S., Spielman R. S., Cox N. J. Gene for non-insulin-dependent diabetes mellitus (maturity-onset diabetes of the young subtype) is linked to DNA polymorphism on human chromosome 20q. Proc Natl Acad Sci U S A. 1991 Feb 15;88(4):1484–1488. doi: 10.1073/pnas.88.4.1484. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Byrne M. M., Sturis J., Menzel S., Yamagata K., Fajans S. S., Dronsfield M. J., Bain S. C., Hattersley A. T., Velho G., Froguel P. Altered insulin secretory responses to glucose in diabetic and nondiabetic subjects with mutations in the diabetes susceptibility gene MODY3 on chromosome 12. Diabetes. 1996 Nov;45(11):1503–1510. doi: 10.2337/diab.45.11.1503. [DOI] [PubMed] [Google Scholar]
  4. Cerasi E., Luft R. The plasma insulin response to glucose infusion in healthy subjects and in diabetes mellitus. Acta Endocrinol (Copenh) 1967 Jun;55(2):278–304. doi: 10.1530/acta.0.0550278. [DOI] [PubMed] [Google Scholar]
  5. DeFronzo R. A. Lilly lecture 1987. The triumvirate: beta-cell, muscle, liver. A collusion responsible for NIDDM. Diabetes. 1988 Jun;37(6):667–687. doi: 10.2337/diab.37.6.667. [DOI] [PubMed] [Google Scholar]
  6. Dib C., Fauré S., Fizames C., Samson D., Drouot N., Vignal A., Millasseau P., Marc S., Hazan J., Seboun E. A comprehensive genetic map of the human genome based on 5,264 microsatellites. Nature. 1996 Mar 14;380(6570):152–154. doi: 10.1038/380152a0. [DOI] [PubMed] [Google Scholar]
  7. Economou E. P., Bergen A. W., Warren A. C., Antonarakis S. E. The polydeoxyadenylate tract of Alu repetitive elements is polymorphic in the human genome. Proc Natl Acad Sci U S A. 1990 Apr;87(8):2951–2954. doi: 10.1073/pnas.87.8.2951. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Eriksson K. F., Lindgärde F. Poor physical fitness, and impaired early insulin response but late hyperinsulinaemia, as predictors of NIDDM in middle-aged Swedish men. Diabetologia. 1996 May;39(5):573–579. doi: 10.1007/BF00403304. [DOI] [PubMed] [Google Scholar]
  9. Falorni A., Kockum I., Sanjeevi C. B., Lernmark A. Pathogenesis of insulin-dependent diabetes mellitus. Baillieres Clin Endocrinol Metab. 1995 Jan;9(1):25–46. doi: 10.1016/s0950-351x(95)80803-5. [DOI] [PubMed] [Google Scholar]
  10. Falorni A., Ortqvist E., Persson B., Lernmark A. Radioimmunoassays for glutamic acid decarboxylase (GAD65) and GAD65 autoantibodies using 35S or 3H recombinant human ligands. J Immunol Methods. 1995 Oct 12;186(1):89–99. doi: 10.1016/0022-1759(95)00139-2. [DOI] [PubMed] [Google Scholar]
  11. Froguel P., Vaxillaire M., Sun F., Velho G., Zouali H., Butel M. O., Lesage S., Vionnet N., Clément K., Fougerousse F. Close linkage of glucokinase locus on chromosome 7p to early-onset non-insulin-dependent diabetes mellitus. Nature. 1992 Mar 12;356(6365):162–164. doi: 10.1038/356162a0. [DOI] [PubMed] [Google Scholar]
  12. Froguel P., Zouali H., Vionnet N., Velho G., Vaxillaire M., Sun F., Lesage S., Stoffel M., Takeda J., Passa P. Familial hyperglycemia due to mutations in glucokinase. Definition of a subtype of diabetes mellitus. N Engl J Med. 1993 Mar 11;328(10):697–702. doi: 10.1056/NEJM199303113281005. [DOI] [PubMed] [Google Scholar]
  13. Gidh-Jain M., Takeda J., Xu L. Z., Lange A. J., Vionnet N., Stoffel M., Froguel P., Velho G., Sun F., Cohen D. Glucokinase mutations associated with non-insulin-dependent (type 2) diabetes mellitus have decreased enzymatic activity: implications for structure/function relationships. Proc Natl Acad Sci U S A. 1993 Mar 1;90(5):1932–1936. doi: 10.1073/pnas.90.5.1932. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Groop L. C., Widén E., Ferrannini E. Insulin resistance and insulin deficiency in the pathogenesis of type 2 (non-insulin-dependent) diabetes mellitus: errors of metabolism or of methods? Diabetologia. 1993 Dec;36(12):1326–1331. doi: 10.1007/BF00400814. [DOI] [PubMed] [Google Scholar]
  15. Groop L., Forsblom C., Lehtovirta M., Tuomi T., Karanko S., Nissén M., Ehrnström B. O., Forsén B., Isomaa B., Snickars B. Metabolic consequences of a family history of NIDDM (the Botnia study): evidence for sex-specific parental effects. Diabetes. 1996 Nov;45(11):1585–1593. doi: 10.2337/diab.45.11.1585. [DOI] [PubMed] [Google Scholar]
  16. Grubin C. E., Daniels T., Toivola B., Landin-Olsson M., Hagopian W. A., Li L., Karlsen A. E., Boel E., Michelsen B., Lernmark A. A novel radioligand binding assay to determine diagnostic accuracy of isoform-specific glutamic acid decarboxylase antibodies in childhood IDDM. Diabetologia. 1994 Apr;37(4):344–350. doi: 10.1007/BF00408469. [DOI] [PubMed] [Google Scholar]
  17. Heding L. G. Radioimmunological determination of human C-peptide in serum. Diabetologia. 1975 Dec;11(6):541–548. doi: 10.1007/BF01222104. [DOI] [PubMed] [Google Scholar]
  18. Hudson T. J., Stein L. D., Gerety S. S., Ma J., Castle A. B., Silva J., Slonim D. K., Baptista R., Kruglyak L., Xu S. H. An STS-based map of the human genome. Science. 1995 Dec 22;270(5244):1945–1954. doi: 10.1126/science.270.5244.1945. [DOI] [PubMed] [Google Scholar]
  19. Iwasaki N., Ohgawara H., Nagahara H., Kawamura M., Bell G. I., Omori Y. Characterization of Japanese families with early-onset type 2 (non-insulin dependent) diabetes mellitus and screening for mutations in the glucokinase and mitochondrial tRNA(Leu(UUR)) genes. Acta Diabetol. 1995 Mar;32(1):17–22. doi: 10.1007/BF00581039. [DOI] [PubMed] [Google Scholar]
  20. Kruglyak L., Lander E. S. Complete multipoint sib-pair analysis of qualitative and quantitative traits. Am J Hum Genet. 1995 Aug;57(2):439–454. [PMC free article] [PubMed] [Google Scholar]
  21. Lillioja S., Mott D. M., Spraul M., Ferraro R., Foley J. E., Ravussin E., Knowler W. C., Bennett P. H., Bogardus C. Insulin resistance and insulin secretory dysfunction as precursors of non-insulin-dependent diabetes mellitus. Prospective studies of Pima Indians. N Engl J Med. 1993 Dec 30;329(27):1988–1992. doi: 10.1056/NEJM199312303292703. [DOI] [PubMed] [Google Scholar]
  22. Mahtani M. M., Widén E., Lehto M., Thomas J., McCarthy M., Brayer J., Bryant B., Chan G., Daly M., Forsblom C. Mapping of a gene for type 2 diabetes associated with an insulin secretion defect by a genome scan in Finnish families. Nat Genet. 1996 Sep;14(1):90–94. doi: 10.1038/ng0996-90. [DOI] [PubMed] [Google Scholar]
  23. Matsutani A., Janssen R., Donis-Keller H., Permutt M. A. A polymorphic (CA)n repeat element maps the human glucokinase gene (GCK) to chromosome 7p. Genomics. 1992 Feb;12(2):319–325. doi: 10.1016/0888-7543(92)90380-b. [DOI] [PubMed] [Google Scholar]
  24. Menzel S., Yamagata K., Trabb J. B., Nerup J., Permutt M. A., Fajans S. S., Menzel R., Iwasaki N., Omori Y., Cox N. J. Localization of MODY3 to a 5-cM region of human chromosome 12. Diabetes. 1995 Dec;44(12):1408–1413. doi: 10.2337/diab.44.12.1408. [DOI] [PubMed] [Google Scholar]
  25. Murray J. C., Buetow K. H., Weber J. L., Ludwigsen S., Scherpbier-Heddema T., Manion F., Quillen J., Sheffield V. C., Sunden S., Duyk G. M. A comprehensive human linkage map with centimorgan density. Cooperative Human Linkage Center (CHLC). Science. 1994 Sep 30;265(5181):2049–2054. doi: 10.1126/science.8091227. [DOI] [PubMed] [Google Scholar]
  26. Nishi S., Stoffel M., Xiang K., Shows T. B., Bell G. I., Takeda J. Human pancreatic beta-cell glucokinase: cDNA sequence and localization of the polymorphic gene to chromosome 7, band p 13. Diabetologia. 1992 Aug;35(8):743–747. doi: 10.1007/BF00429094. [DOI] [PubMed] [Google Scholar]
  27. Schuler G. D., Boguski M. S., Stewart E. A., Stein L. D., Gyapay G., Rice K., White R. E., Rodriguez-Tomé P., Aggarwal A., Bajorek E. A gene map of the human genome. Science. 1996 Oct 25;274(5287):540–546. [PubMed] [Google Scholar]
  28. Seilhamer J. J., Randall T. L., Yamanaka M., Johnson L. K. Pancreatic phospholipase A2: isolation of the human gene and cDNAs from porcine pancreas and human lung. DNA. 1986 Dec;5(6):519–527. doi: 10.1089/dna.1.1986.5.519. [DOI] [PubMed] [Google Scholar]
  29. Tattersall R. B., Fajans S. S. A difference between the inheritance of classical juvenile-onset and maturity-onset type diabetes of young people. Diabetes. 1975 Jan;24(1):44–53. doi: 10.2337/diab.24.1.44. [DOI] [PubMed] [Google Scholar]
  30. Vaxillaire M., Boccio V., Philippi A., Vigouroux C., Terwilliger J., Passa P., Beckmann J. S., Velho G., Lathrop G. M., Froguel P. A gene for maturity onset diabetes of the young (MODY) maps to chromosome 12q. Nat Genet. 1995 Apr;9(4):418–423. doi: 10.1038/ng0495-418. [DOI] [PubMed] [Google Scholar]
  31. Warram J. H., Martin B. C., Krolewski A. S., Soeldner J. S., Kahn C. R. Slow glucose removal rate and hyperinsulinemia precede the development of type II diabetes in the offspring of diabetic parents. Ann Intern Med. 1990 Dec 15;113(12):909–915. doi: 10.7326/0003-4819-113-12-909. [DOI] [PubMed] [Google Scholar]
  32. Yamagata K., Oda N., Kaisaki P. J., Menzel S., Furuta H., Vaxillaire M., Southam L., Cox R. D., Lathrop G. M., Boriraj V. V. Mutations in the hepatocyte nuclear factor-1alpha gene in maturity-onset diabetes of the young (MODY3) Nature. 1996 Dec 5;384(6608):455–458. doi: 10.1038/384455a0. [DOI] [PubMed] [Google Scholar]
  33. Zhang Y., Warren-Perry M., Saker P. J., Hattersley A. T., Mackie A. D., Baird J. D., Greenwood R. H., Stoffel M., Bell G. I., Turner R. C. Candidate gene studies in pedigrees with maturity-onset diabetes of the young not linked with glucokinase. Diabetologia. 1995 Sep;38(9):1055–1060. doi: 10.1007/BF00402175. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES

  NODES
INTERN 1
twitter 2