Skip to main content
The Journal of Neuroscience logoLink to The Journal of Neuroscience
. 1995 Nov 1;15(11):7539–7547. doi: 10.1523/JNEUROSCI.15-11-07539.1995

Regulation of BDNF and trkB mRNA in rat brain by chronic electroconvulsive seizure and antidepressant drug treatments

M Nibuya 1, S Morinobu 1, RS Duman 1
PMCID: PMC6578063  PMID: 7472505

Abstract

The influence of chronic electroconvulsive seizure (ECS) or antidepressant drug treatments on expression of brain-derived neurotrophic factor (BDNF) and its receptor, trkB, was examined by in situ hybridization and Northern blot. In frontal cortex, acute ECS increased BDNF mRNA approximately twofold, an effect significantly augmented by a prior course of chronic ECS treatment (10 d). In the hippocampus, the influence of chronic ECS varied between the major subfields. In the dentate gyrus granule cell layer, chronic ECS decreased the acute induction of BDNF and trkB mRNA by approximately 50%, but prolonged their expression: levels remained elevated two- to threefold 18 hr later after the last chronic ECS treatment, but returned to control 18 hr after acute ECS. In CA3 and CA1 pyramidal cell layers, chronic ECS significantly elevated the acute induction of BDNF, and tended to prolong the expression of BDNF and trkB mRNA. A similar effect was observed in layer 2 of the piriform cortex, where chronic ECS significantly increased the acute induction and prolonged the expression of BDNF and trkB mRNA. Chronic (21 d), but not acute (1 d), administration of several different antidepressant drugs, including tranylcypromine, sertraline, desipramine, or mianserin, significantly increased BDNF mRNA and all but mianserin increased trkB mRNA in hippocampus. In contrast, chronic administration of nonantidepressant psychotropic drugs, including morphine, cocaine, or haloperidol, did not increase levels of BDNF mRNA. Furthermore, chronic administration of ECS or antidepressant drugs completely blocked the down-regulation of BDNF mRNA in the hippocampus in response to restraint stress. The enhanced induction and prolonged expression of BDNF in response to chronic ECS and antidepressant drug treatments could promote neuronal survival, and protect neurons from the damaging effects of stress.


Articles from The Journal of Neuroscience are provided here courtesy of Society for Neuroscience

RESOURCES

  NODES
admin 3
twitter 2